[网络安全提高篇] 一二四.DataCon涉网分析之恶意样本IOC自动化提取万字详解

117 篇文章 3317 订阅 ¥49.90 ¥99.00

2024新的战场,继续奋斗。 “网络安全提高班”新的100篇文章即将开启,包括Web渗透、内网渗透、靶场搭建、CVE复现、攻击溯源、实战及CTF总结,它将更加聚焦,更加深入,也是作者的慢慢成长史。换专业确实挺难的,Web渗透也是块硬骨头,但我也试试,看看自己未来四年究竟能将它学到什么程度,漫漫长征路,偏向虎山行。享受过程,一起加油~

前文详细介绍如何构建深度学习模型实现恶意软件家族分类,常见模型包括CNN、BiLSTM、BiGRU,结合注意力机制的CNN+BiLSTM。这篇文章是作者2022年参加清华大学、奇安信举办的DataCon比赛,主要是关于涉网FZ分析,包括恶意样本IOC自动化提取和攻击者画像分析两类题目。这篇文章来自L师妹的Writeup,经同意后分享给大家,推荐大家多关注她的文章,也希望对您有所帮助。非常感谢举办方让我们学到了新知识,DataCon也是我比较喜欢和推荐的大数据安全比赛,我连续参加过四届,很幸运且遗憾,我们团队近年来也获得过第1、2、4、6、7、8名过,希望更多童鞋都参加进来!感恩同行,不负青春,且看且珍惜!

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
恭喜您获得域名_DataCon 2020 DNS恶意域名分析方向冠军!以下是您的writeup: 赛题概述: 本次比赛的任务是对一组恶意域名进行分析。每个参赛者需要对提供的数据集进行分析,从中筛选出恶意域名,并对这些域名进行分类、分析和解释。数据集包括了近期出现的一些恶意域名,其中一部分已被官方确认。 分析流程: 1. 数据集的基本情况分析 首先,对数据集进行一些基本的统计分析,比如恶意域名的数量、出现频率、域名长度、TLD分布等等。这些分析可以帮助我们初步了解数据集的特点,为后续的分析提供一些指导。 2. 特征提取 在数据集分析的基础上,我们需要对每个域名进行特征提取。常用的特征包括域名长度、字符集分布、TLD类型、子域名数量、字母频率等等。提取出来的特征可以作为后续模型训练的输入。 3. 恶意域名分类 接下来,我们需要对每个域名进行分类。分类的目的是将恶意域名和正常域名分离开来,为后续的分析提供基础。常用的分类方法包括传统的机器学习分类算法(如决策树、SVM等)和深度学习分类算法(如CNN、LSTM等)。 4. 恶意域名分析 分类完成后,我们需要对恶意域名进行进一步的分析。具体来说,我们需要分析每个恶意域名的类型、攻击方式、受害者等等。这些分析可以帮助我们更好地了解恶意域名的本质和特点,为后续的防御工作提供指导。 5. 结果展示 最后,我们需要将分析结果进行展示。可以采用报告、PPT、图表等多种形式来呈现分析结果。同时,也可以将分析结果与其他团队进行交流,分享经验、互相学习。 总结: 通过对数据集的分析和特征提取,我们可以将恶意域名和正常域名分离开来,并进行进一步的分类和分析。这些工作可以帮助我们更好地了解恶意域名的本质和特点,为后续的防御工作提供指导。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值