LeNet5是一种经典的卷积神经网络模型,最初由Yann LeCun等人提出,用于手写数字识别。它是深度学习领域的重要里程碑之一,对于图像分类任务具有很好的效果。本文将介绍如何使用LeNet5模型来进行交通标志分类任务,并提供相应的源代码。
-
数据集准备
首先,我们需要准备一个交通标志分类的数据集。可以使用公开的数据集,如German Traffic Sign Recognition Benchmark(GTSRB)数据集。该数据集包含了50,000个训练样本和12,630个测试样本,涵盖了43个不同类型的交通标志。 -
数据预处理
在进行模型训练之前,我们需要对数据进行预处理。预处理的步骤包括图像的缩放、归一化和标签的独热编码。
import numpy as np
from PIL import Image
from sklearn.preprocessing