MIT18.065 数据分析、信号处理和机器学习中的矩阵方法 学习笔记 -- Lecture 12 Computing Eigenvalues and Singular Values

Topic: Computing eigenvalues & Singular values

1.Computing eigenvalues

(1)计算过程

A_{0}=Q_{0}R_{0} :将非正交基转化为正交基乘上三角矩阵的形式

问题:所需证明的是A_{0}=A_1{}??答:所需解决的问题是eig(A_{0})=eig(A_{1})

因此我猜测想表达的意思是比较二者的特征值是否相等,黑板上的等式并不成立。

A1的获得过程如下:

当前解决的问题是:A_{0}A_{1}的特征值是否相同?

  • 当有一个矩阵A_{0},通过变换出现一个相较于A0更小的值A_{2}左下角处。
  • 通过多次变换A_{n}对角线上的元素非常接近特征值,其他元素\varepsilon均逐渐逼近0,并且不影响对角线的特征值及变换过程。
  • 在对角线中,\lambda _{n}是最先接近精确特征值的。

举例说明:左下角的数据会以三次方的开销快速缩小到0,对角线上的元素会逐渐接近特征值。

(2)如何加快变化的速度?(即加快趋近特征值的速度)

To solve the problem,the idea will introducing a shift. 

通过一个转变,更便捷和快速的解决问题。

A_{0}-SI=Q_{0}R_{0} 

通过S倍对阵矩阵的转变,  特征向量保持不变,特征值\lambda^{'} _{n}=\lambda _{n}-s

因此想要找到一个转变,使\lambda _{n}=0,以此加快变换速度。

(3)证明:在转变后矩阵仍然相似

(4)是否可以做其他的转变?

思考:在计算过程中耗费时间最长的地方在哪?答:因式分解。

如果矩阵A_{0}存在一些元素为0?海森堡矩阵(Hessenberg matrix)大大减少了QR分解的工作量。

ps:5th degree (5 * 5 and up) impossible. no formula to find the formula for \lambda ^{'}_{s}

Hessenberg 矩阵是一种特殊类型的方阵,它几乎是上三角矩阵,除了主对角线下面的第一个次对角线。

完整QR方法:①化简A成为Hessenberg形式,矩阵内呈现许多0的状态;②转变形式(shifts),进行QR分解。

matlab 中计算特征值的代码如下:

eig(A)

(5)矩阵的对称性

A_{0}矩阵有对称性,则根据上述推导A_{1}同样存在对称性。

若一个Hessenberg矩阵具有对称性,则可以推出矩阵形式如下:

如此更加简化了QR的过程。

2.Computing Singular values and SVD

(1)类比及计算

若存在一个对称矩阵S通过变换获得tridiagonal矩阵,所获得的矩阵与原始矩阵S有相同的特征值:

QSQ^{T}=QSQ^{-1}

当存在一个general matrix A,想要通过矩阵变换,找到相同的奇异值(singular values 所能计算的矩阵广泛,并非只针对方阵)。

核心问题:What group of matrices will have the same sigmas as my starting matrix A?

What is SVD?答:SVD 是奇异值分解(Singular Value Decomposition)。奇异值分解是一种矩阵分解的方法,用于将一个矩阵分解成三个矩阵的乘积。

对于一个给定的矩阵 A,其奇异值分解表示为:A=U\Sigma V^{T}

此时应该如何变换此方程才能不影响 \Sigma 矩阵? \Sigma 是不变量

求解过程如下:

计算A^{T}A=tridiagonal,则回到上面的问题

(2)当矩阵很大且稀疏时?

 Krylov :b, Ab, A^{2}b, .... A^{999}b     => 1000 维的空间

 我们希望这个很大的矩阵可以被约束在这1000维的空间之内?100维的空间之内?

  • 由于矩阵的稀疏性,这个很大的矩阵大部分有效数据,均在100维的空间之内,在其外的很小且可以被忽略。
  • 由此就只考虑100维空间之内的数据,将100million大小的矩阵压缩到100*100.
  • 此方法只看the lowest 100--the first 100 eigenvalues of the million

b, Ab, A^{2}b, .... A^{99}b     => 1000 维的空间

回到上节课:目前我们快速获得了100维的空间。我们可以对其正交化,由此获得正交基。

总结:我们获得了100维的子空间,查找在这有限的子空间中,大矩阵所被限制的部分,并获得其在有限空间中的特征值,这些特征值不一定是最优最大的特征值,但一定是精确的特征值

本节课程有些难度,其中有一点地方笔者也没有完全搞清楚,若有错误的地方欢迎大家指正,或留言进行讨论。

  • 17
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值