本系列为MIT Gilbert Strang教授的"数据分析、信号处理和机器学习中的矩阵方法"的学习笔记。
- Gilbert Strang & Sarah Hansen | Sprint 2018
- 18.065: Matrix Methods in Data Analysis, Signal Processing, and Machine Learning
- 视频网址: https://ocw.mit.edu/courses/18-065-matrix-methods-in-data-analysis-signal-processing-and-machine-learning-spring-2018/
- 关注 下面的公众号,回复“ 矩阵方法 ”,即可获取 本系列完整的pdf笔记文件~
内容在CSDN、知乎和微信公众号同步更新
- Markdown源文件暂未开源,如有需要可联系邮箱
- 笔记难免存在问题,欢迎联系邮箱指正
Lecture 0: Course Introduction
Lecture 1 The Column Space of A A A Contains All Vectors A x Ax Ax
Lecture 2 Multiplying and Factoring Matrices
Lecture 3 Orthonormal Columns in Q Q Q Give Q ′ Q = I Q'Q=I Q′Q=I
Lecture 4 Eigenvalues and Eigenvectors
Lecture 5 Positive Definite and Semidefinite Matrices
Lecture 6 Singular Value Decomposition (SVD)
Lecture 7 Eckart-Young: The Closest Rank k k k Matrix to A A A
Lecture 8 Norms of Vectors and Matrices
Lecture 9 Four Ways to Solve Least Squares Problems
Lecture 10 Survey of Difficulties with A x = b Ax=b Ax=b
Lecture 11 Minimizing ||x|| Subject to A x = b Ax=b Ax=b
Lecture 12 Computing Eigenvalues and Singular Values
Lecture 13 Randomized Matrix Multiplication
Lecture 14 Low Rank Changes in A A A and Its Inverse
Lecture 15 Matrices A ( t ) A(t) A(t) Depending on t t t, Derivative = d A / d t dA/dt dA/dt
Lecture 16 Derivatives of Inverse and Singular Values
Lecture 17 Rapidly Decreasing Singular Values
Lecture 18 Counting Parameters in SVD, LU, QR, Saddle Points
Lecture 19 Saddle Points Continued, Maxmin Principle
Lecture 20 Definitions and Inequalities
Lecture 21 Minimizing a Function Step by Step
Lecture 22 Gradient Descent: Downhill to a Minimum
Lecture 23 Accelerating Gradient Descent (Use Momentum)
Lecture 24 Linear Programming and Two-Person Games
Lecture 25 Stochastic Gradient Descent
Lecture 26 Structure of Neural Nets for Deep Learning
Lecture 27 Backpropagation: Find Partial Derivatives
Lecture 28 Computing in Class [No video available]
Lecture 29 Computing in Class (cont.) [No video available]
Lecture 30 Completing a Rank-One Matrix, Circulants!
Lecture 31 Eigenvectors of Circulant Matrices: Fourier Matrix
Lecture 32 ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule
Lecture 33 Neural Nets and the Learning Function
Lecture 34 Distance Matrices, Procrustes Problem
Lecture 35 Finding Clusters in Graphs
Lecture 36 Alan Edelman and Julia Language
文章目录
Lecure 8: Norms of Vectors and Matrices
-
一个与本课程无关的问题(现象):Probability Matching
-
Biased Coin: 但是参与者不知道 (无先验)
▪ 75% likely to produce heads
▪ 25% likely to produce tails
-
payoff 1 guess right or 1 guess wrong
-
Optimal strategy: 刚开始会根据之前的经验猜测都是 50%, 但尝试过程中会慢慢优化 ⇒ \Rightarrow ⇒ 最终,to guess heads all the time
-
但人类实际上会:guess heads three quarters of the time and tails one quarter of the time
-
该问题说明了: there is good math questions everywhere, 与本节课无关
-
-
下面开始本节课的内容: Norms
8.1 Vectors norms ∥ v ∥ p \|v\|_p ∥v∥p
-
∥ v ∥ p = ( ∣ v 1 ∣ p + ∣ v 2 ∣ p + . . . + ∣ v n ∣ p ) 1 / p \|v\|_p = (|v_1|^p + |v_2|^p + ... + |v_n|^p)^{1/p} ∥v∥p=(∣v1∣p+∣v2∣p+...+∣vn∣p)1/p
-
Norm is a way to measure
-
the size of a vector / matrix / tensor
-
p = 2
- v 1 2 + v 2 2 + . . . + v n 2 \sqrt{v_1^2 + v_2^2 + ... + v_n^2} v12+v22+...+vn2
-
p = 1
- ∣ v 1 ∣ + ∣ v 2 ∣ + . . . + ∣ v n ∣ |v_1| + |v_2| + ... + |v_n| ∣v1∣+∣v2∣+...+∣vn∣
- some things really work best in the L 1 L_1 L1 norm
-
p = ∞ \infty ∞
- m a x ∣ v i ∣ max |v_i| max∣vi∣
- as increasing p, whichever one is biggest is going to take over
-
p = 0
-
∥ v ∥ 0 \|v\|_0 ∥v∥0 is the number of non-zero components
-
important in question of sparsity
🚩 you might want to min ∥ v ∥ 0 \|v\|_0 ∥v∥0 ⇒ \Rightarrow ⇒ to get sparse vectors ⇒ \Rightarrow ⇒ 以加快运算速度
-
Note: ∥ v ∥ 0 \|v\|_0 ∥v∥0 is not a norm! ⇒ \Rightarrow ⇒ 2 ∥ v ∥ 0 ≠ 2 ∥ v ∥ 0 2 \|v\|_0 \not =2 {\|v\|_0} 2∥v∥0=2∥v∥0 ⇒ \Rightarrow ⇒ violates violates 违反 违背 the rule for a norm
-
-
The Geometry of a norm
-
plots the norm in 2D space R 2 \mathbb{R}^2 R2
✅ 如下图
-
哪些范数适合优化?True norm: convex unit ball ∥ v ∥ ≤ 1 \|v\|\leq 1 ∥v∥≤1
🚩 L 1 L_1 L1 优化的时候 NOT Convex!
🚩 L 2 L_2 L2: Convex, 使优化求解稳定快速
-
- p = S
-
S: means a positive definite symmetric matrix
-
∥ v ∥ S = v T S v \|v\|_S = \sqrt{v^T S v} ∥v∥S=vTSv
-
⋅ \sqrt{\cdot} ⋅的意义:使 ∥ 2 v ∥ S = 2 × \| 2 v\|_S = 2\times ∥2v∥S=2× ∥ v ∥ S \|v\|_S ∥v∥S ⇒ \Rightarrow ⇒ grow linearly
-
What is the shape of ∥ v ∥ S = v T S v = 1 \|v\|_S = \sqrt{v^T S v} = 1 ∥v∥S=vTSv=1? (S: symmetric positive definite)
✅ let S = [ 2 0 0 3 ] S = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} S=[2003]
✅ ⇒ \Rightarrow ⇒ v T S v = 2 v 1 2 + 3 v 2 2 = 1 v^T S v = 2 v_1^2 + 3 v_2^2 = 1 vTSv=2v12+3v22=1
🚩 S范数的意义:get a new picture: a new norm that is kind of adjustable ⇒ \Rightarrow ⇒ a weighted norm ⇒ \Rightarrow ⇒ pixk some numbers sort of appropriate to the particular problem
🚩 the shape is an ellipse
-
8.2 Optimal Problem
- A simple example:
-
m i n min min ∥ x ∥ 1 \|x\|_1 ∥x∥1 or ∥ x ∥ 2 \|x\|_2 ∥x∥2
🚩 Ax = b (e.g., a 1 x 1 + a 2 x 2 = b a_1x_1 + a_2x_2 = b a1x1+a2x2=b)
-
L1: a famous name basis pursuit 基底追踪?
-
L2: Ridge regression
-
下图,可见 L 1 L_1 L1 倾向于稀疏结果 (可从geometry 角度解释);
-
8.3 Matrix Norms
-
∥ A ∥ 2 \|A\|_2 ∥A∥2 = σ 1 \sigma_1 σ1
- the largest singular
- How to connect it to 2 norms of vectors?
- Matrix norm from vector norm = max blowup
- ∣ ∣ A ∣ ∣ 2 = m a x ∀ x ∥ A x ∥ 2 ∣ ∣ x ∣ ∣ 2 ||A||_2 = max_{\forall x} \frac{\|Ax\|_2}{||x||_2} ∣∣A∣∣2=max∀x∣∣x∣∣2∥Ax∥2
-
How to prove : ∣ ∣ A ∣ ∣ 2 = m a x ∀ x ∥ A x ∥ 2 ∣ ∣ x ∣ ∣ 2 ||A||_2 = max_{\forall x} \frac{\|Ax\|_2}{||x||_2} ∣∣A∣∣2=max∀x∣∣x∣∣2∥Ax∥2 = σ 1 =\sigma_1 =σ1 ?
- when x is the singular vector v 1 v_1 v1 (eigenvectors of A T A A^TA ATA)
- ∥ A v 1 ∥ / ∥ v 1 ∥ = ∥ A v 1 ∥ / 1 = ∥ A v 1 ∥ = ∥ σ 1 u 1 ∥ = σ 1 \|Av_1\| / \|v_1\| = \|Av_1\| / 1 = \|Av_1\| = \|\sigma_1 u_1\| = \sigma_1 ∥Av1∥/∥v1∥=∥Av1∥/1=∥Av1∥=∥σ1u1∥=σ1
-
∥ A ∥ F = a d d a l l ∣ a i j ∣ 2 = σ 1 2 + . . . + σ r 2 \|A\|_F = \sqrt{add \quad all \quad |a_{ij}|^2} = \sqrt{\sigma_1^2 + ... + \sigma_r^2} ∥A∥F=addall∣aij∣2=σ12+...+σr2
- Frobenius norm
- In SVD: A = U Σ V T A = U\Sigma V^T A=UΣVT ⇒ \Rightarrow ⇒ Orthogonal matrix U , V U, V U,V does not change any of these particular norms ⇒ \Rightarrow ⇒ ∥ Σ ∥ F = ∥ A ∥ F \|\Sigma\|_F = \|A\|_F ∥Σ∥F=∥A∥F
-
∥ A ∥ N \|A\|_N ∥A∥N
-
Nuclear norm: σ 1 + σ 2 + . . . + σ r \sigma_1 + \sigma_2 + ... + \sigma_r σ1+σ2+...+σr
-
在Deep Learning中的应用:
🚩 conjecture 推测 – in a typical deep learning problem, there are many more weights than samples, and so there are a lot of possible minima – many different weights give the same minimum loss ⇒ \Rightarrow ⇒ too many parameters (但也不见得是坏事,even part of the sucess)
🚩 in a model situation, 梯度下降法 picks out the weights that minimize the nuclear norm ⇒ \Rightarrow ⇒ 🚩 a norm of a lot of weights
-
在压缩感知中也有应用
-
This lecture: about the norms
Next lecture: least squares problems
本节小结
- 向量范数: L 1 L_1 L1, L 2 L_2 L2 norm等
- 向量范数 geometry,范数的意义,几种范数用于优化时的特点
- 矩阵范数