知识推理引擎在金融行业的落地
推理能力是人类智能的重要特征,一般的推理通常需要一些规则的支持。知识图谱通过三元组(实体、属性、值)将知识互相连接起来,基于三元组的结构实现知识推理,从已有的知识中发现隐含的信息。例如“小明的妻子的孩子叫糖糖“可以推理出”小明的孩子叫糖糖。三元组形式的数据是结构化的数据,金融行业的数据具有结构化的特征,很多金融机构都有自己的产品知识库。本文就以证券公司为例,介绍竹间的知识推理引擎的能力。01 准备数据知识图谱的数据必须为结构化的数据,因此数据需要梳理和清洗。数据有多种上传方式,客户可通过EXCEL上传(如下图),或者调用批量接口上传,即客户可以把自己知识库中的知识清洗后通过接口来上传。
金融行业的数据一个显著特点是高度动态性,因此需要考虑知识的时效性。竹间的知识推理引擎支持属性为接口类型,当机器人识别到用户问实体的接口类型的属性时,数据会实时查询的。例如查询基金的最新净值,则最新净值这个属性的类型可设置为接口类型。
训练和测试模型
知识推理引擎是通过语料来训练模型,并可以