知识推理引擎在金融行业的落地

金融行业数据动态性强,竹间知识推理引擎支持实时查询接口类型属性,如基金最新净值。通过语料训练模型并迭代,实现基于实体、属性的查询推理及上下文理解。应用广泛,包括金融、医疗、物流等领域。
摘要由CSDN通过智能技术生成

知识推理引擎在金融行业的落地


在这里插入图片描述
推理能力是人类智能的重要特征,一般的推理通常需要一些规则的支持。知识图谱通过三元组(实体、属性、值)将知识互相连接起来,基于三元组的结构实现知识推理,从已有的知识中发现隐含的信息。例如“小明的妻子的孩子叫糖糖“可以推理出”小明的孩子叫糖糖。三元组形式的数据是结构化的数据,金融行业的数据具有结构化的特征,很多金融机构都有自己的产品知识库。本文就以证券公司为例,介绍竹间的知识推理引擎的能力。01 准备数据知识图谱的数据必须为结构化的数据,因此数据需要梳理和清洗。数据有多种上传方式,客户可通过EXCEL上传(如下图),或者调用批量接口上传,即客户可以把自己知识库中的知识清洗后通过接口来上传。

在这里插入图片描述

金融行业的数据一个显著特点是高度动态性,因此需要考虑知识的时效性。竹间的知识推理引擎支持属性为接口类型,当机器人识别到用户问实体的接口类型的属性时,数据会实时查询的。例如查询基金的最新净值,则最新净值这个属性的类型可设置为接口类型。

在这里插入图片描述

训练和测试模型

知识推理引擎是通过语料来训练模型,并可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值