OpenAI进展:GPT-5的隐秘与AGI未来

在生成式AI和人工智能大模型的新时代,OpenAI无疑是闪耀的那颗星辰。

从GPT-3的横空出世到GPT-4、GPT-4o等推理模型系列的发布,OpenAI不断推动着大模型技术的演进和发展。

然而,关于其下一代模型GPT-5的进展却显得异常神秘。

根据技术分析师Alberto Romero刚刚在The Algorithmic Bridge发表的最新论述和合理推测,OpenAI很可能在去年就已经构建完成了GPT-5,但该大模型仅供其内部训练使用。

老法师在AI世界里依然重要。

这也能解释,为什么OpenAI能在这么短的时间内,快速推出o1、o1mini、o3、o3 mini等系列小模型——内部训练使用GPT-5“蒸馏”商业小模型的投资回报远远高于将GPT-5公开发布给广大用户。‍

GPT-5:迟来的神秘嘉宾

自GPT-4发布以来,关于GPT-5的传言就从未停歇。

人们期待着这款新模型在性能上实现质的飞跃,然而,OpenAI却一直保持沉默,没有给出任何确切的发布日期。

这种异常的沉默引发了外界的诸多猜测。

其中,一个颇为引人注目的猜想是:GPT-5其实已经存在,但OpenAI选择将其留在内部使用,而非公开发布。

这一猜想的提出并非空穴来风,类似的情况已经发生在Anthropic的Claude Opus 3.5身上。

早在2024年12月,半导体专家Dylan Patel和其 Semianalysis 团队就曾指出,Anthropic已完成对 Claude 3.5 Opus的训练,Claude 3.5 Opus表现良好,并且能够适当扩展,但Anthropic并没有对其进行发布。

尽管外界一度期待Opus 3.5能成为GPT-4o的有力竞争者,但Anthropic最终却选择了发布其衍生模型Sonnet 3.6,而Opus 3.5则悄然失踪。

据推测,Anthropic之所以没有发布Opus 3.5,是因为他们在内部发现了其更大的价值——将Opus 3.5作为“教师”模型使用,用于生成合成数据,从而“蒸馏”其他模型的性能。

有此前车之鉴,OpenAI的情况或许与之类似。

相比GPT-5运行一次训练可能就高达数亿美元的高昂的训练和推理成本,其性能的提升又或不能满足用户们高居不下的期待值,OpenAI或许认为将其留在内部使用,通过“蒸馏”技术提升其即将发布的商业化小型模型的性能,是一个更为明智的选择。

这样一来,他们既能保持技术上的领先地位,又能有效控制成本,避免因为性能不佳而引发的公众质疑。

蒸馏将强大模型炼为金矿

中国初创企业DeepSeek开发的大语言模型(LLM)DeepSeek-V3就让我们实感到了全球AI生态的一次重要变革。

其性能比肩世界顶尖的闭源模型OpenAI的GPT-4o和Anthropic的Claude 3.5 Sonnet,但开发和训练成本却明显低于其他大模型。

DeepSeek-V3仅用了2048个GPU在57天内便完成了训练。其成本约557.6万美元,仅为其他主流模型(如GPT-4)的1/10左右。

Bigger is better的阶段结束了,推理模型开始追求小而强。

蒸馏技术并不是什么新鲜事物,在AI领域的应用日益广泛。

使用强大、昂贵的大规模参数模型生成数据来提升略弱但更便宜的模型性能的过程被称为蒸馏。这种技术让AI实验室将其小型模型提升到仅靠额外预训练无法达到的智能水平。

OpenAI创始成员之一安德烈·卡帕蒂强调了这种非凡的效率:通过让强大的“教师”模型指导“学生”模型的学习,蒸馏技术能够在保持推理成本低廉的同时,显著提升小型模型性能。这不仅提高了模型的效率,还使得AI技术更加普及和易用。

对于OpenAI和Anthropic这样的顶级实验室来说,蒸馏技术无疑是一个强大的工具。他们可以利用内部的大型模型生成高质量的合成数据,从而训练出性能优异的小型模型。

这些小型模型不仅易于部署和维护,还能在保持高性能的同时,降低用户的成本和使用门槛。

随着蒸馏技术的广泛应用,AI模型的未来或许将呈现出一种全新的趋势:更小、更快、更强。

一方面,小型模型由于具有更低的推理成本和更高的灵活性,将逐渐成为市场的主流。另一方面,通过蒸馏技术从大型模型中汲取的智慧,这些小型模型将能够在性能上不断逼近甚至超越传统的大型模型。

这一趋势或将对AI行业的发展产生深远的影响。

它将使得AI技术更加普及和易用,从而推动更多创新应用的涌现。随着小型模型的不断优化和升级,AI系统的整体性能和效率将得到显著提升。这一趋势还将促进AI技术向千行百业渗透和发展,为未来的智能社会奠定坚实的基础。

OpenAI的野心:AGI与ASI‍

尽管在公众面前保持低调,但OpenAI的野心却从未减少。

他们不仅致力于推动自然语言处理技术的发展,更在追寻着人工智能的终极梦想——通用人工智能(AGI)和超级人工智能(ASI)。为了实现这一目标,OpenAI或许正在内部秘密研发着更为强大的模型,如比GPT-5甚至更高级别的版本。

当然,AGI和ASI的实现并非易事。

据披露,OpenAI 有五条治理条款,包括其运作方式、与非营利组织的关系、与董事会的关系以及与微软的关系,其中第五条有对于AGI的定义。

AGI是指“在大多数具有经济价值的工作中超越人类的高度自主系统”。

另外更加不为大众所知晓的是,OpenAI与微软关于AGI还有另一个秘密的定义——共识是AGI 是一个“可以产生至少 1000 亿美元利润的 AI 系统”。

实现AGI和ASI,除了技术上的挑战外,还涉及到伦理、法律和社会等多个层面的复杂问题。因此,OpenAI在追求技术突破的同时,也必须谨慎考虑这些潜在的风险和影响。

他们会选择推迟发布某些大模型,也为了避免引发不必要的争议和质疑。但无论如何,他们的努力都将对AI行业的未来发展产生深远的影响。

GPT-5显然还不可能是AGI,但避免发布GPT-5,至少可以规避触碰AGI的商业营收红线,从而引发不必要的麻烦。

或许此时此刻,最恰当的比喻是,GPT-5正像是一位“在秘密的山洞中传递智慧的老年隐士”,OpenAI或许也在其巨大的数据中心中默默耕耘着AI的未来。

我们无法直接窥见他们的最新进展和内部的隐秘。‍‍

但我们却能感受到智慧之光正在加速照亮人类的世界……‍‍

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值