你是不是被 DeepSeek-R1 1.5b、7b、8b、14b、32b、70b、671b 这些概念绕晕了?
如图所示:
DeepSeek-R1 模型有好几种规格,比如 1.5b、7b、8b、14b、32b、70b、671b,后面的数字代表模型的参数量,而 b 则是指 “billion” 的意思,也就是十亿,表示这个模型有多少亿个参数:
- 1.5b 有 15 亿个参数;
- 7b 是 70 亿个参数;
- 8b 是 80 亿个参数;
- 14b 是 140 亿个参数;
- 32b 是 320 亿个参数;
- 70b 是 700 亿个参数;
- 671b 是 6710 亿个参数。
其中,671b 就是指传说中的 “满血版”,性能最强,也就是官网部署的版本。
这样命名并不是 DeepSeek 的独特之处,其他大模型也都是这样命名的,比如说 llama:
参数量直接决定了一个模型的计算能力和硬件需求,一般来说:
- 参数越大: 代表模型越聪明,对复杂问题的处理能力越强,但对算力和硬件的要求也越高。
- 参数越小: 代表模型越轻量化,对算力和硬件的要求越低,适合资源受限的设备。
所以,一个模型的参数量越大,它能处理和生成的内容质量越复杂、越高,也更能满足我们的要求,不过也需要更多的硬件资源来支撑。
问题来了:参数量越大越好吗?
大家可能会觉得,既然参数量越大模型越聪明,那是不是直接用最大的参数量就完事了?
其实,这并不一定,现实中,参数量大 ≠ 适合所有场景,得具体问题具体分析。
比如以下几个场景:
1、轻量化设备上的推理需求
如果你想在手机、嵌入式设备或者单片机上部署一个模型,那么像 671b 这种 “猛兽” 显然是不现实的。
这时候更小的参数量(比如 1.5b 或 7b)就显得非常有优势,它们对算力要求低,响应速度快,适合低功耗设备运行。
举个例子:我们手机里的语音助手,比如 Siri、Google Assistant、小爱同学等语音助手,就需要采用这种轻量化模型。
2、超大规模的推理和复杂应用
而对于一些高精尖的应用场景,比如大型内容生成、医学影像诊断或者金融预测等,这些任务需要处理复杂数据并生成高质量结果,那就需要依赖大模型了。
像 70b 或 671b 这样的超大模型就很适合这些高算力场景,尤其是在数据中心或云端运行时,这些参数多的大模型可以提供更准确的结果。
DeepSeek-R1 系列模型的规格划分主要是为了适应不同场景的需求,从小到大覆盖了轻量化应用到高算力推理的各种场景。
在实际应用中,我们需要根据算力、成本、业务需求等综合因素来选择合适的模型。
所以大家不用被参数量这些数字吓到,记住一点:适合自己的,才是最好的!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。