因为访问量过大以及遭受网络攻击,DeepSeek官网和APP这几天时好时坏,API也没法用。
此前我们已分享了本地部署DeepSeek-R1的方法,但普通用户限于硬件配置,连70b模型也很难跑起来,更别说671b的全量模型了。
幸好各大平台都接入了DeepSeek-R1,大家可以尝试作为平替。
一、英伟达NIM微服务
网址:
https://build.nvidia.com/deepseek-ai/deepseek-r1
英伟达部署了全量参数671B的DeepSeek-R1模型,网页版直接使用,点进去就能看到聊天窗口:
同时右侧也列出了代码页:
简单测试一下:
聊天框下方,还可以开启一些参数项(多数情况下可默认):
这些选项的大概意思和功能如下:
- Temperature(温度): 数值越高,输出更随机,可能生成更具创造性的回答
- Top P(核采样): 数值越高,保留更多概率质量的token,生成更具多样性
- Frequency Penalty(词频惩罚): 数值越高,越多地惩罚高频词,减少啰嗦或重复
- Presence Penalty(出现惩罚): 数值越高,越倾向于让模型尝试新词
- Max Tokens(最大生成长度): 数值越高,回答潜在的篇幅越长
- Stop(停止条件): 生成到某些特定字符或序列时,停止输出,防止生成过长或跑题
目前,由于白嫖的人越来越多(看下图的排队人数),NIM部分时段会出现卡顿:
难道英伟达也缺显卡?
NIM微服务还支持API调用DeepSeek-R1,但你需要用邮箱注册账号:
注册过程比较简单,只用邮箱验证:
注册好之后,可以点击聊天界面右上方的“Build with this NIM”生成API KEY,目前注册就送1000点数(互动1000次),白嫖党可以用完再换个新邮箱再注册。
NIM微服务平台也提供其他许多模型的使用:
二、微软Azure
网址:
https://ai.azure.com
微软Azure可以通过聊天操场,创建一个聊天机器人,并与模型交互。
Azure的注册麻烦许多,首先你要创建一个微软账户(如果已经有了就直接登录):
创建账户也需要邮箱验证:
完了要证明自己是人类,连续回答10道阴间问题:
到这里还不够,还得创建订阅:
验证手机号码以及银行账号等信息:
接下来选择“无任何技术支援”:
到这里就可以开始云部署了,在“模型目录”可以看到显眼的DeepSeek-R1模型:
点击之后,在下一个页面点击“部署”:
接下来要选择“创建新项目”:
然后全部默认,点击“下一个”:
接下来点击“创建”:
在这个页面下创建就开始了,需要等待一段时间:
完成后来到这个页面,你可以点击“部署”,进入下一步:
也可以查看上方面的“定价和条款”,可以看到是免费使用:
继续点击“部署”进入这个页面,可以点击“在操场中打开”:
然后就可以开始对话:
Azure也有类似NIM的参数调节可选:
作为平台,有许多模型可以部署:
对于已经部署的模型,今后通过左边菜单的“操场”或“模型+终结点”就可以快速访问:
三、亚马逊AWS
网址:
https://aws.amazon.com/cn/blogs/aws/deepseek-r1-models-now-available-on-aws
DeepSeek-R1同样在显眼位置,排面。
亚马逊AWS注册过程和微软Azure差不多麻烦,都要填写付款方式,还要电话验证+语音验证,这里就不再详细描述:
具体部署过程和微软Azure也是大同小异:
四、Cerebras(需科学上网)
网址:
https://cerebras.ai
和几家大型平台不同,Cerebras使用的是70b模型,宣称“比GPU方案快57倍”:
邮箱注册进入后,上方的下拉菜单可以选择DeepSeek-R1:
实测速度确实比较快,虽然没有宣称的夸张:
五、Groq(需科学上网)
网址:
https://groq.com/groqcloud-makes-deepseek-r1-distill-llama-70b-available
邮箱注册进入后,也是可以选择模型:
速度也很快,但同样是70b,感觉比Cerebras的要弱智一点?
注意,登录状态下可以直接访问聊天界面:
https://console.groq.com/playground?model=deepseek-r1-distill-llama-70b
希望大家玩得开心,也希望DeepSeek早日恢复正常!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。