最近几天,科技圈被一个名为Manus 的国产AI产品彻底点燃了。
社交媒体上,有人把它比作《流浪地球》中的智能AI“MOSS”,有人疯狂求购内测邀请码甚至炒到10万元一个,资本市场更是掀起涨停潮。
这匹突然杀出的“黑马”究竟有什么魔力?它和此前备受关注的DeepSeek有何不同?对普通人而言,它的出现又意味着什么?让我们从这场狂欢的细节中,试着理清背后的逻辑。
1、从“工具”到“打工人”:AI的新角色
如果说过去的AI工具像“参谋”,那么Manus更像一个“全能打工人”。
举个例子:你是一个HR,面对100份简历压缩包,只需丢给Manus,它会自动解压、分析候选人信息,生成包含居住地距离公司远近的Excel排名表。
或者你想在纽约买房,Manus能调用犯罪率数据库筛选安全社区,抓取房源并分析学校排名,最终生成一份综合报告。
整个过程无需人工干预,甚至能根据用户临时追加的需求动态调整任务链。
这种“甩手掌柜”式的体验,源于Manus对AI能力的重新定义。
传统AI如DeepSeek更擅长语言生成、数学解题等“思考型”任务,而Manus的核心是“执行”。
它像一个数字世界的特种部队,通过多智能体协作架构(类似分工明确的“小分队”),调用代码编辑器、浏览器、数据分析工具等外部软件,将用户指令拆解成可操作的步骤,最终直接交付成果。
这种从“建议”到“行动”的跨越,让AI从“辅助工具”升级为“自主代理人”,甚至被用户戏称为“聪明的实习生”。
2、技术突破与市场狂欢
Manus的爆发并非偶然,在权威的GAIA基准测试中,它在复杂任务处理上刷新了世界纪录,击败OpenAI和DeepSeek。
其技术核心在于“无结构化”设计——不预设功能模块,而是通过多模型协同和虚拟机沙盒技术,让AI自主规划任务流程。
这种灵活性与DeepSeek的“大参数模型+专业领域知识”形成鲜明对比:后者更擅长深度思考,前者更擅长动手执行。
市场的反应堪称疯狂,AI智能体概念股单日涨幅超20%,二手平台上的内测邀请码被炒到天价,企业用户占比高达63%。
这种热度背后,是职场对“自动化救命稻草”的渴望——金融分析师用它生成报告,医疗机构用它监控股价波动,教师用它制作教学材料。
有人感叹:“它没有做人类做不到的事,但省去了我们最讨厌的繁琐步骤。”
3、普通人的机遇与焦虑
对普通人而言,Manus的出现是一把双刃剑。
积极的一面显而易见:它让复杂任务的门槛大幅降低。
一个不懂编程的小白可以通过自然语言指令完成数据分析;小企业主能借助它节省人力成本;甚至家庭主妇也能用它规划旅行或比较保险政策。
这种“技术平权”效应,可能催生新的职业形态——比如“AI任务设计师”,专注于将需求转化为精准指令。
但隐忧同样存在,当AI能替代HR筛简历、替代文员处理报表,传统岗位的生存空间必然被挤压。
有网友自嘲:“以前怕被同事卷,现在怕被AI卷。”
更深层的挑战在于信任——如果AI在合同审核中因语义歧义出错,责任该由谁承担?数据隐私和算法偏见的问题也尚未解决。
此外,Manus目前依赖企业级定制,普通人能否低成本享受其服务仍是未知数。
4、Manus 和 DeepSeek哪个厉害?
如果说Manus和DeepSeek的差异用一个比喻概括,那就是“手与脑的分工”。
DeepSeek像一位博学的顾问,凭借6710亿参数的庞大模型,在文案润色、论文写作等领域展现深度思考能力,但它的价值更多体现在“输入-输出”的线性流程中。
而Manus更像一个手脚麻利的执行者,它的优势不是单一任务的完美解答,而是跨平台、多步骤的串联操作。
例如,部署一个网站时,它能同时处理代码编写、服务器配置、测试验证等环节,而DeepSeek可能止步于提供代码建议。
这种差异本质上是技术路线的选择:DeepSeek追求模型的“智力密度”,Manus追求系统的“行动广度”。
两者并非替代关系,而是互补——前者适合需要创意的场景,后者适合流程化的重复劳动。
有趣的是,OpenAI也嗅到了趋势,计划推出月费2万美元的“博士级研究智能体”,而Manus团队则考虑开源部分模型,吸引开发者共建生态。
未来的AI竞争,或许不再是单一模型的“参数战争”,而是生态与场景的整合能力。
5、一场静悄悄的生产力革命已经到来
Manus的爆火,表面上是一场技术狂欢,本质上却映射了人类对效率的永恒追求。
当AI从“回答问题”进化到“完成任务”,它不再是一个工具,而逐渐成为工作流中不可或缺的“同事”。
这种变革带来的不仅是效率提升,更是思维方式的颠覆——我们开始习惯将任务“外包”给AI,自己则专注于更具创造性的部分。
当然,这场革命才刚刚开始。
Manus的内测版本仍不完美,语义歧义和跨领域泛化能力有待提升;资本的热捧也可能掩盖技术落地的实际难度。
但无论如何,它的出现撕开了一个口子:当AI真正成为人类的“手”,而不仅仅是“脑”,人机协作的边界将被彻底改写。
或许不久的将来,我们会像今天讨论“是否用手机导航”一样,自然地将琐事交给AI代理——那时回望此刻的狂热,大概会莞尔一笑:原来这就是未来的起点。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。