模型上下文协议(MCP)赋予了AI Agent调用外部工具的能力,极大地拓展了AI的应用边界。最新开源的Qwen3系列大模型不仅在性能上表现优异,还原生支持MCP,为高级AI Agent应用的构建提供了坚实的基础。
尽管借助Cursor、Cherry Studio、Open-WebUI等图形化客户端,用户能够便捷地体验Qwen3的MCP功能,但对于那些渴望深度集成、定制化操作和精细控制的开发者来说,通过代码实现才是核心途径。基于此,Qwen团队推出了Qwen_Agent框架。该框架提供了一种比直接使用底层SDK更高效、更易上手的方式,助力工程师快速将Qwen3的Agent能力整合到实际项目当中。
在本文里,我们将介绍如何运用Qwen_Agent框架,并结合Ollama(于本地运行Qwen3 8b)、Streamlit(用于构建UI)以及Pollinations MCP Server(一款强大的外部工具,能够让AI助手直接生成图像、文本和音频),以编写代码的方式快速搭建起一个具备图像生成能力的Qwen3 AI助手。
环境搭建
- 安装Ollama
Linux: curl -fsSL https://ollama.com/install.sh | sh
Windows: https://ollama.com/download/OllamaSetup.exe
MAC: https://ollama.com/download/Ollama-darwin.zip
Docker: https://hub.docker.com/r/ollama/ollama
- 下载Qwen3模型 安装完Ollama后,从终端下载Qwen3模型:
ollama run qwen3:8b
- 创建Python虚拟环境并安装
conda create -n qwen_agent python=3.11
conda activate qwen_agent
pip install -U "qwen-agent[gui,rag,code_interpreter,mcp]"
pip install streamlit
构建Qwen AI助手
我们编写Python代码来创建一个简单的Streamlit Web应用程序,该应用程序使用Qwen Agent连接到本地运行的Qwen3模型,并利用Pollinations MCP工具进行图像生成。
import streamlit as st
from qwen_agent.agents import Assistant
# 1. 定义 LLM 配置:连接到本地 Ollama 上的 Qwen3 模型
# 确保 Ollama 服务正在运行,并且 qwen3 模型已成功下载。
llm_cfg = {
'model': 'qwen3:8b', # 通过 `ollama run qwen3:8b` 下载并运行的模型名称
'model_server': 'http://localhost:11434/v1', # Ollama API 的标准端点
'api_key': 'EMPTY', # 对于本地 Ollama 服务,API 密钥通常设置为 'EMPTY' 或任意非空字符串
# 'generate_cfg': { # 可选:自定义模型生成参数
# 'top_p': 0.8
# }
}
# 2. 定义工具列表:集成 Pollinations MCP 和代码解释器
tools = [
{
'mcpServers': { # 定义 MCP 服务器配置
"pollinations": { # 为此 MCP 服务指定一个易于引用的名称
"command": "npx", # 启动此 MCP 服务器所需的命令
"args": ["-y", "@pollinations/model-context-protocol"], # 传递给启动命令的参数
# qwen_agent 会在需要时自动运行此命令来启动 MCP 服务器实例
}
}
},
'code_interpreter', # 引入内置的代码解释器工具
]
# 3. 创建 Assistant 实例:初始化 Qwen Agent
# 传入之前定义的 LLM 配置和工具列表
bot = Assistant(llm=llm_cfg, function_list=tools)
# 4. 构建 Streamlit 应用界面
st.set_page_config(page_title="Qwen AI 助手", layout="wide")
st.title("Qwen智能图像生成助手 (由 Qwen3 和 MCP 驱动)")
st.caption("一个能够理解指令并调用外部图像生成工具(免费)的AI助手。")
# 初始化或获取会话状态中的消息列表
if'messages'notin st.session_state:
st.session_state['messages'] = []
# 为了修复API错误,初始问候语不应成为发送给API的第一条消息
# 这里我们先显示一个静态的问候语,它不进入API调用的消息历史的起始部分
ifnot st.session_state.messages: # 仅当真实消息历史为空时显示初始问候
with st.chat_message("assistant"):
st.markdown('你好!有什么可以帮您的吗?例如,试试“画一只戴着宇航员头盔的猫咪”。')
# 显示实际的对话历史 (st.session_state.messages 中的内容)
for message in st.session_state.messages: # 初始运行时,这里是空的
with st.chat_message(message["role"]):
st.markdown(message["content"])
# 用户输入文本框
user_input = st.chat_input("请输入您的指令:")
if user_input:
# 将用户消息添加到消息列表并显示
# 这是API将收到的第一条消息 (如果列表之前为空)
st.session_state['messages'].append({'role': 'user', 'content': user_input})
with st.chat_message("user"):
st.markdown(user_input)
# 运行机器人并获取响应
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response_content = ""
with st.spinner("🧠 思考中,请稍候..."):
try:
# 此处 st.session_state['messages'] 将以用户消息开头
responses_stream = bot.run(messages=st.session_state['messages'])
for responses_chunk in responses_stream:
pass# 迭代消耗生成器
final_assistant_responses = [msg for msg in responses_chunk if msg['role'] == 'assistant'and msg notin st.session_state['messages']]
if final_assistant_responses:
full_response_content = "\n".join([str(resp['content']) for resp in final_assistant_responses if'content'in resp]) # 确保content存在
message_placeholder.markdown(full_response_content)
st.session_state['messages'].extend(final_assistant_responses)
# 如果responses_chunk的最后一个是助手且内容非空,但未被上面逻辑捕获
elif responses_chunk and responses_chunk[-1]['role'] == 'assistant'and responses_chunk[-1].get('content'):
full_response_content = str(responses_chunk[-1]['content'])
message_placeholder.markdown(full_response_content)
if responses_chunk[-1] notin st.session_state.messages:
st.session_state.messages.append(responses_chunk[-1])
else:
message_placeholder.markdown("抱歉,我暂时无法回复。")
except Exception as e:
st.error(f"糟糕,处理您的请求时发生错误: {e}")
st.session_state['messages'].append({'role': 'assistant', 'content': f"发生错误: {e}"})
运行Qwen AI助手
将上述代码保存为一个Python文件(例如 qwen_mcp_app.py)。 确保Ollama服务正在运行,并且Qwen3模型已通过ollama run qwen3:8b成功加载至少一次。 打开终端,激活您的虚拟环境,并导航到保存文件的目录。 运行Streamlit应用:
streamlit run qwen_mcp_app.py
Streamlit将在您的默认Web浏览器中打开一个新的标签页,显示Qwen AI助手界面。
总结
本文带你了解了如何使用Qwen3、Qwen Agent和MCP工具集(通过Pollinations)构建一个能够理解你的请求并利用外部工具(如图像生成)的AI助手。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。