“年薪百万,公司抢着要!”——这可不是吹牛。
最近AI圈出了个新宠岗位:大模型训练工程师。
从ChatGPT到Sora,科技巨头们疯狂砸钱挖人,应届生起薪60万,资深专家年薪百万不稀奇。
凭啥这么火?小白能转行吗?怎么上手?这篇给你说明白!
一、大模型工程师:AI行业新"金饭碗",钱多岗少抢破头!
1、行业现状:
- 谷歌、微软、OpenAI和国内的百度、阿里、腾讯、字节等大厂,每年砸几十亿研发AI大模型。
- 国家政策大力扶持,2024年相关岗位数量直接涨了三倍,但人才缺口巨大!
2、薪资行情:
- 新人起薪:大厂应届生年薪40万起步
- 2年经验:月入8-10万成常态
- 资深专家:年薪百万保底,能带团队或有技术突破的,200万现金+股票期权随便谈
3、抢人大战:
- 猎头圈公认"最难挖的岗位",技术大牛手握5个offer成基本操作,企业得靠加薪加码才能抢到人。
- 业内调侃:“这行薪资没有天花板,只有老板的血压天花板。”
二、想入行?先看这岗位到底干啥的
可以简单理解为:让“超级大脑”(大模型)变聪明、能干活的人。
具体工作分3步:
- 喂数据、教知识:
- 处理海量文本/图像/语音(比如网页、书籍、聊天记录),清洗数据中的错误、重复内容。
- 用算法让模型“学习”这些数据里的规律,比如识别句子结构、理解图像物体关系。
- 调优:让模型更聪明、更听话:
- 模型初始训练后可能“犯傻”(比如答非所问),工程师通过“微调”(用特定任务数据优化)让它专注解决具体问题,比如翻译、写文案、代码生成。
- 设计“提示词(Prompt)”模板,教模型按人类习惯回答,比如让它用口语化风格写朋友圈,或用严谨格式写报告。
- 落地:让模型变成能用的工具:
- 把模型“打包”成API接口,比如让手机APP、网页能调用模型能力(比如智能客服、AI绘图)。
- 优化模型速度和效率,比如让它在手机上运行更快,或处理超长文本(比如几万字的合同)。
三、入门需要哪些技能?
- 基础必备技能(先打地基)
编程语言:
- 必须会 Python(大模型主流语言,学基本语法、函数、文件操作)。
- 了解 Shell(处理服务器文件、运行程序)。
- 数学基础(不用精通,但要懂核心概念):
- 微积分:梯度下降(模型优化的核心原理,简单理解为“找下山最快的路”)。
- 线性代数:矩阵运算(模型处理数据的基本方式,比如把文本变成数字矩阵)。
- 概率统计:理解模型的“不确定性”,比如预测结果的概率。
机器学习入门:
- 懂 神经网络基础(比如神经元、层的概念,知道CNN(图像处理)、RNN(序列处理)是什么)。
- 会用 PyTorch/TensorFlow 框架(至少能跑通简单模型训练代码,比如手写数字识别)。
- 大模型专属技能(核心竞争力)
大模型架构原理:
- 搞懂 Transformer(大模型的“骨架”,比如GPT、Llama都用它,核心是“注意力机制”——让模型知道句子里哪些词更相关,比如“猫坐在垫子上”,“猫”和“垫子”要重点关联)。
- 了解 分词器(比如BPE、WordPiece:把文本拆成模型能理解的“小碎片”Token,比如“苹果”可能拆成“苹果”或“苹+果”)。
微调与训练技巧:
- 会用 Hugging Face库(大模型开发神器,里面有大量预训练模型和工具,比如Transformers、Datasets)。
- 知道 LoRA、QLoRA 等轻量化微调技术(用更少算力优化大模型,比如在消费级显卡上微调百亿参数模型)。
Prompt工程(让模型听话的艺术):
- 学会设计高质量提示词,比如用“system prompt”指定模型角色(“你是一个专业的翻译员”),用“few-shot示例”教它具体格式(给1 - 2个翻译例子,让它模仿)。
数据处理能力:
- 会用 Python库(Pandas清洗数据,Numpy处理数值,jieba做中文分词)。
- 懂数据标注(比如用Label Studio标训练数据,或用模型自动生成部分数据)。
- 工具与实践(动手最重要!)
必学工具:
- 代码管理:Git(上传代码、合作开发)。
- 模型部署:FastAPI(搭API接口)、Docker(打包模型环境,让别人能直接用)。
- 可视化:TensorBoard(看模型训练过程是否正常)、W&B(跟踪训练参数和结果)。
实战方向:
- 从 小模型练手:比如用Hugging Face训练一个中文分类模型(判断评论是好评还是差评)。
- 玩 开源大模型:下载Llama、Baichuan等模型,用Colab免费算力跑通微调代码,比如让它生成小红书文案。
- 参加 Kaggle竞赛 或 Hugging Face比赛:实战中学习调参、优化模型。
四、学习路径建议(少走弯路)
- 先啃基础:花1 - 2个月学Python、机器学习基础(推荐《吴恩达机器学习》课程,中文易懂)。
- 聚焦大模型:直接看Hugging Face官方教程(免费且实战性强),跟着跑通“加载模型→输入文本→输出结果”的流程。
- 动手为王:别光看书,每学一个概念就写代码(比如用Llama 2生成一段对话,用QLoRA微调让它更懂电商客服)。
大模型领域变化快,入门别怕“难”,先从能跑通的小项目开始,慢慢积累成就感! 😊
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。