点的变换(矩阵转化)

79 篇文章 0 订阅


Link:http://acm.nyist.net/JudgeOnline/problem.php?pid=298


点的变换

时间限制: 2000 ms  |  内存限制: 65535 KB
难度: 5
描述

平面上有不超过10000个点,坐标都是已知的,现在可能对所有的点做以下几种操作:

平移一定距离(M),相对X轴上下翻转(X),相对Y轴左右翻转(Y),坐标缩小或放大一定的倍数(S),所有点对坐标原点逆时针旋转一定角度(R)。    

操作的次数不超过1000000次,求最终所有点的坐标。

 

提示:如果程序中用到PI的值,可以用acos(-1.0)获得。

输入
只有一组测试数据
测试数据的第一行是两个整数N,M,分别表示点的个数与操作的个数(N<=10000,M<=1000000)
随后的一行有N对数对,每个数对的第一个数表示一个点的x坐标,第二个数表示y坐标,这些点初始坐标大小绝对值不超过100。
随后的M行,每行代表一种操作,行首是一个字符:
首字符如果是M,则表示平移操作,该行后面将跟两个数x,y,表示把所有点按向量(x,y)平移;
首字符如果是X,则表示把所有点相对于X轴进行上下翻转;
首字符如果是Y,则表示把所有点相对于Y轴进行左右翻转;
首字符如果是S,则随后将跟一个数P,表示坐标放大P倍;
首字符如果是R,则随后将跟一个数A,表示所有点相对坐标原点逆时针旋转一定的角度A(单位是度)
输出
每行输出两个数,表示一个点的坐标(对结果四舍五入到小数点后1位,输出一位小数位)
点的输出顺序应与输入顺序保持一致
样例输入
2 5
1.0 2.0 2.0 3.0
X
Y
M 2.0 3.0
S 2.0
R 180
样例输出
-2.0 -2.0
0.0 0.0
来源
经典问题

分析:如果按照题目描述的那样模拟,肯定会超时。这时就要找一种快速变换的方法。


重点分析最后一个矩阵是如何得到的:在平面中,一个点绕任意点旋转θ度后的点的坐标公式如下:假设对图片上任意点(x,y),绕一个坐标点(rx0,ry0)逆时针旋转a角度后的新的坐标设为(x0, y0),有公式:

    x0= (x - rx0)*cos(a) - (y - ry0)*sin(a) + rx0 ;
    y0= (x - rx0)*sin(a) + (y - ry0)*cos(a) + ry0 ;

对这两条公式的证明:详见http://jingyan.baidu.com/article/2c8c281dfbf3dd0009252a7b.html

这样就可以先算出经过M次变换后形成的最终矩形,然后用点的坐标乘以矩形就可以求出答案。

AC code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
#define LL long long 
#define MAXN 1000010
using namespace std;
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
struct point{
	double x;
	double y;
}p[MAXN];
//----以下为矩阵快速幂模板-----// 
//const int mod=1000;//模3,故这里改为3即可 
int mod=2;
const int NUM=4;//定义矩阵能表示的最大维数 
int N;//N表示矩阵的维数,以下的矩阵加法、乘法、快速幂都是按N维矩阵运算的 
struct Mat{//矩阵的类
	double a[NUM][NUM];
	Mat(){memset(a,0,sizeof(a));}  
	void init()//将其初始化为单位矩阵  
	{
		memset(a,0,sizeof(a));
		for(int i=0;i<NUM;i++)
		{
			a[i][i]=1;
		}
	}
};
Mat A,B,ans;
Mat add(Mat a,Mat b)//(a+b)%mod  矩阵加法  
{
	Mat ans;
	for(int i=0;i<N;i++)
	{
		for(int j=0;j<N;j++)
		{
			ans.a[i][j]=(a.a[i][j])+(b.a[i][j]);
		}
	}
	return ans;
}
Mat mul(Mat a,Mat b) //(a*b)%mod  矩阵乘法  
{
	Mat ans;
	for(int i=1;i<=N;i++)
	{
		for(int j=1;j<=N;j++)
		{
			ans.a[i][j]=0;
			for(int k=1;k<=N;k++)
			{
				ans.a[i][j]=(ans.a[i][j]+a.a[i][k]*b.a[k][j]);
			}
		}
	}
	return ans;
}
Mat power(Mat a,int num)//(a^n)%mod  矩阵快速幂 
{
	Mat ans;
	ans.init();
	while(num)
	{
		if(num&1)
		{
			ans=mul(ans,a);
		}
		num>>=1;
		a=mul(a,a);
	}
	return ans;
}
Mat pow_sum(Mat a,int num)//(a+a^2+a^3....+a^n)%mod 矩阵的幂和
{
	int m;
	Mat ans,pre;
	if(num==1)
		return a;
	m=num/2;
	pre=pow_sum(a,m);
	ans=add(pre,mul(pre,power(a,m)));
	if(num&1)
		ans=add(ans,power(a,num));
	return ans;
}
Mat mov(Mat a,double x,double y)
{
	Mat ans;
	ans.init();
	ans.a[1][3]=x;
	ans.a[2][3]=y;
	return mul(ans,a);//注意:这里是矩阵ans左乘a!!!下面都是,不是右乘 
}
Mat x_ud(Mat a)
{
	Mat ans;
	ans.init();
	ans.a[2][2]=-1;
	return mul(ans,a);
}
Mat y_lr(Mat a)
{
	Mat ans;
	ans.init();
	ans.a[1][1]=-1;
	return mul(ans,a);
}
Mat s_large(Mat a,double p)
{
	Mat ans;
	ans.init();
	ans.a[1][1]=p;
	ans.a[2][2]=p;
	return mul(ans,a);
}
Mat rot(Mat a,double angle)
{
	angle=(angle/180.0)*PI;
	Mat ans;
	ans.init();
	ans.a[1][1]=ans.a[2][2]=cos(angle);
	ans.a[1][2]=-sin(angle);
	ans.a[2][1]=sin(angle);
	return mul(ans,a);
}
void output(Mat a)//输出矩阵 
{
	for(int i=1;i<=N;i++)
	{
		for(int j=1;j<=N;j++)
		{
			printf("%d%c",a.a[i][j],j==N-1?'\n':' ');
		}
	}
}
//----以上为矩阵快速幂模板-----// 
int main()
{
	//freopen("D:\in.txt","r",stdin);
	int n,m,i,j;
	double x,y;
	char ch;
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++)
	{
		scanf("%lf%lf",&p[i].x,&p[i].y);
	}
	A.init();
	N=3;
	while(m--)
	{
		getchar();
		scanf("%c",&ch);
		if(ch=='X')
				A=x_ud(A);
		else if(ch=='Y')
				A=y_lr(A);
		else if(ch=='M')
		{
			scanf("%lf%lf",&x,&y);
			A=mov(A,x,y);
		}
		else if(ch=='S')
		{
			scanf("%lf",&x);
			A=s_large(A,x);	
		}
		else if(ch=='R'){
			scanf("%lf",&x);
			A=rot(A,x);
		}
	}
		for(i=1;i<=n;i++)
		{
			ans.a[1][1]=A.a[1][1]*p[i].x+A.a[1][2]*p[i].y+A.a[1][3];
			ans.a[2][1]=A.a[2][1]*p[i].x+A.a[2][2]*p[i].y+A.a[2][3];
			printf("%.1lf %.1lf\n",ans.a[1][1],ans.a[2][1]);
		}
	return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
通过透视变换矩阵,可以将原始图像中的映射到矫正后的图像中。具体步骤如下: 1. 使用cv2.getPerspectiveTransform()函数计算透视变换矩阵M,需要提供原始图像中的四个和目标图像中对应的四个。 2. 使用cv2.warpPerspective()函数将原始图像进行透视变换,得到矫正后的图像。 3. 对于需要转换的P(x, y),将其表示为齐次坐标P' = [x, y, 1],然后通过矩阵乘法计算矫正后的P'' = M * P'。 4. 对于矫正后的P''(u, v, w),将其表示为非齐次坐标P(u/w, v/w)即为最终的矫正坐标。 示例代码如下: ```python import cv2 import numpy as np # 计算透视变换矩阵M src_pts = np.float32([[0, 0], [0, 100], [100, 0], [100, 100]]) dst_pts = np.float32([[0, 0], [0, 200], [200, 0], [200, 200]]) M = cv2.getPerspectiveTransform(src_pts, dst_pts) # 加载原始图像并进行透视变换 img = cv2.imread('test.jpg') img_size = (img.shape[1], img.shape[0]) warped = cv2.warpPerspective(img, M, img_size) # 转换需要矫正的 x, y = 50, 50 P = np.float32([[x], [y], [1]]) P_ = np.dot(M, P) u, v, w = P_[0], P_[1], P_[2] x_, y_ = int(u/w), int(v/w) print('矫正前坐标:({},{}),矫正后坐标:({},{})'.format(x, y, x_, y_)) ``` 其中,src_pts为原始图像中的四个的坐标,dst_pts为目标图像中对应的四个的坐标,M为透视变换矩阵。在转换需要矫正的时,需要将其表示为齐次坐标P',然后通过矩阵乘法计算P'',最后将其表示为非齐次坐标即可得到矫正后的坐标。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林下的码路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值