MAE(Mean Absolute Error,平均绝对误差)和 MSE(Mean Squared Error,均方误差)

MAE(Mean Absolute Error,平均绝对误差)和 MSE(Mean Squared Error,均方误差)是常用的回归任务中用于评估模型性能的两种误差度量指标。

1. MAE (平均绝对误差)

MAE 计算的是预测值与真实值之间的绝对差值的平均数,公式如下:

在这里插入图片描述

解释
MAE 衡量的是预测值与真实值之间的平均差异,越小表示模型预测越准确。它的单位与目标值的单位相同,因此可以直接与数据的实际量纲进行比较。

你的结果
MAE = 521.69,表示模型的预测值和真实值之间的平均误差是 521.69 个单位。

2. MSE (均方误差)

MSE 计算的是预测值与真实值之间差值的平方的平均数,公式如下:

在这里插入图片描述

解释
MSE 衡量的是预测误差的平方平均,越小表示模型预测越准确。由于它是平方差,MSE 对较大的错误(误差较大的预测)有更大的惩罚作用,特别适合用于关注较大误差的情况。

你的结果
MSE = 1244275.79,表示所有预测误差的平方平均值是 1244275.79 个单位的平方。由于是平方数,MSE 的数值通常会比 MAE 大得多。

总结

  • MAE 对每个预测误差的惩罚是线性的,简单易懂,适合直观的误差分析。
  • MSE 对较大的误差给予更大的惩罚,因此如果你对大误差更为关注(例如,错误的预测对结果的影响较大),MSE 会更加敏感。

在实际应用中,两者的选择取决于任务和对误差的容忍度。如果你希望平衡大误差和小误差,MAE 是一个更直观的选择;如果你更关心大误差的修正,MSE 会是一个更合适的指标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MonkeyKing.sun

对你有帮助的话,可以打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值