hhhhhh

太好了,我会全面系统地整理这份《HE2001 微观经济学(下)》的全部内容:

  • 英文+中文详细讲解每一章的知识点,逐步推导每个结论,不跳步骤;
  • 对应练习题解答(包括 sample questions)和额外可能会考的题目;
  • 整理一份浓缩版复习笔记,用于最后阶段快速复习。

我会分模块将这些内容详细整理输出给你,稍后就会给你第一部分内容。

HE2001 Microeconomics 2 (Second Half) Comprehensive Review

HE2001 微观经济学2(下半期)综合复习

Chapter 1: Consumer Welfare Measures(第一章:消费者福利度量)

Reservation Price(保留价格)

English: The reservation price is the maximum amount of money that an individual is willing to pay for a good or service. In other words, it’s the highest price at which the consumer would still purchase the item; above this price, the consumer would rather forego the purchase. The reservation price reflects the trade-off between the utility gained from the good and the utility of the money to be spent. It is conceptually related to the marginal rate of substitution (MRS) between the good and money – at the reservation price, the consumer is indifferent between having the good or keeping the money. For example, if your reservation price for a new smartphone is $800, you would be willing to pay up to $800 but not more. At a price exactly equal to your reservation price, you are indifferent between buying and not buying the item. If the market price is below your reservation price, you purchase and gain surplus value; if it’s above, you do not purchase.

中文: 保留价格是指消费者愿意为某商品或服务支付的最高金额。换句话说,这是消费者仍然愿意购买该商品的最高价格;高于此价格,消费者就宁愿不买。保留价格反映了购买该商品所获得的效用与所花费货币的效用之间的权衡。在概念上,它与商品和货币之间的**边际替代率(MRS)**相关——当价格等于保留价格时,消费者在拥有商品和保留用于购买商品的钱之间无差异。例如,如果你对一部新智能手机的保留价格是800美元,那么你最多愿意支付800美元但不愿支付更多。当市场价格正好等于你的保留价格时,买或不买对你来说效用相同。如果市场价低于你的保留价格,你会购买并获得额外剩余价值;如果高于你的保留价格,你就不会购买。

Derivation: Suppose a consumer has initial wealth w w w and utility U ( m o n e y , g o o d ) U(money, good) U(money,good). Let p r p_r pr be the reservation price of some good (the price that makes the consumer indifferent). By definition, p r p_r pr satisfies:
[U(w - p_r,; \text{own good}) ;=; U(w,; \text{no good}),.]
This equation says the utility of paying p r p_r pr to get the good equals the utility of keeping the money and not having the good. Solving this equation (if the utility function is known) yields the reservation price. For example, if U ( x , y ) = v ( x ) + a y U(x,y)=v(x)+a y U(x,y)=v(x)+ay (utility from x x x units of the good plus y y y dollars of money with marginal utility a a a), then the reservation price for the next unit can be derived by setting v ( n ) + a ( w − p r ) = v ( n − 1 ) + a w v(n) + a(w - p_r) = v(n-1) + a w v(n)+a(wpr)=v(n1)+aw (indifference between having n n n units vs n − 1 n-1 n1 units and saving p r p_r pr). This simplifies to:
[p_r ;=; \frac{1}{a}\big(v(n) - v(n-1)\big),]
meaning the reservation price for the n n nth unit equals the utility gain from that unit (the difference v ( n ) − v ( n − 1 ) v(n)-v(n-1) v(n)v(n1)) converted into monetary terms by dividing by a a a ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=iii,%E2%88%92%20%F0%9D%91%90%20%E2%88%92%20%F0%9D%91%9F)). If the good were perfectly divisible, this approaches p r = v ′ ( n ) a p_r = \frac{v'(n)}{a} pr=av(n), i.e. price equals marginal utility for an infinitesimal unit ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=Intuitively%2C%20equating%20the%20utilities%20in,i)). Intuitively, the reservation price for an additional unit is the dollar amount that makes the consumer just indifferent to acquiring that extra unit – which in continuous terms is where price equals marginal utility of the good.

Consumer Surplus(消费者剩余)

English: Consumer surplus (CS) is the monetary measure of the net benefit consumers receive from purchasing a good at the market price. It is defined as the difference between what consumers are willing to pay for each unit (their reservation price or demand price) and what they actually pay (3.5 Demand, Supply, and Efficiency - Principles of Economics 3e | OpenStax). Graphically, consumer surplus is the area under the demand curve and above the actual price line, up to the quantity purchased (3.5 Demand, Supply, and Efficiency - Principles of Economics 3e | OpenStax) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20For%20consumers%E2%80%99%20surplus%2C%20get,measure%20of%20aggregate%20consumer%20welfare)). It represents the total “extra” value or welfare consumers get because they paid less than their maximum willingness to pay. For example, if a consumer would have paid $5 for a cup of coffee but the market price is $3, their surplus on that cup is $2. Summing across all units and all consumers gives the total consumer surplus in the market. Consumer surplus can be calculated as:
[ CS ;=; \int_{0}{Q} P_{\text{d}}(q),dq ;-; P^ \times Q^* ,]
where P d ( q ) P_{\text{d}}(q) Pd(q) is the inverse demand function (reservation price for the q q qth unit), Q ∗ Q^* Q is the equilibrium quantity, and P ∗ P^* P is the market price. In a linear demand case, this formula reduces to the area of a triangle. For instance, if the demand curve is P = a − b Q P= a - bQ P=abQ and the equilibrium price is P ∗ P^* P at quantity Q ∗ Q^* Q, then consumer surplus is 1 2 ( a − P ∗ ) Q ∗ \frac{1}{2}(a - P^*)Q^* 21(aP)Q (the triangular area between the demand line and P ∗ P^* P).

中文: **消费者剩余(CS)*度量了消费者以市场价格购买商品所获得的净利益,用货币表示。它被定义为消费者愿意为每一单位商品支付的金额(保留价格或需求价格)与实际支付价格之间的差额 (3.5 Demand, Supply, and Efficiency - Principles of Economics 3e | OpenStax)。在图形上,消费者剩余对应于需求曲线以下、市场实际价格以上的面积(从零延伸到购买的数量) (3.5 Demand, Supply, and Efficiency - Principles of Economics 3e | OpenStax) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20For%20consumers%E2%80%99%20surplus%2C%20get,measure%20of%20aggregate%20consumer%20welfare))。它表示消费者因支付的价格低于他们愿意支付的最高价而获得的总“额外”价值或福利。例如,如果消费者愿意为一杯咖啡支付5美元,但市场价是3美元,那么他在这一杯咖啡上获得的剩余就是2美元。将所有消费者、所有单位的差额加总,就得到市场的总消费者剩余。消费者剩余可以通过以下公式计算:
[ CS ;=; \int_{0}{Q} P_{\text{d}}(q),dq ;-; P^ \times Q^
,]
其中 P d ( q ) P_{\text{d}}(q) Pd(q)是反需求函数(第 q q q单位商品的保留价格), Q ∗ Q^* Q是均衡数量, P ∗ P^* P是市场价格。在线性需求的情况下,这一公式可简化为三角形面积。例如,若需求曲线为 P = a − b Q P = a - bQ P=abQ,均衡价 P ∗ P^* P对应数量 Q ∗ Q^* Q,则消费者剩余为 1 2 ( a − P ∗ ) Q ∗ \frac{1}{2}(a - P^*)Q^* 21(aP)Q(即需求曲线与 P ∗ P^* P价格线之间的三角形面积)。

Intuition: Consumer surplus can be interpreted as the total happiness (utility) gain consumers get from market transactions, expressed in dollars. It relies on the idea that the demand curve reflects willingness to pay. The first unit a consumer buys is very valuable (high willingness to pay), but each subsequent unit typically has a lower value. By paying a uniform market price for all units, consumers gain surplus on all but the marginal unit purchased. Consumer surplus is higher when the price is lower, or when demand is very strong (steep/high reservation prices). It is zero if the price equals the consumer’s reservation price for every unit (no net gain), and it grows as the market price falls further below the demand curve.

Relationship to Reservation Price: Consumer surplus can also be seen as the sum of the differences between each unit’s reservation price and the price paid. If a consumer buys 3 units with reservation prices $10, $8, $6 for each unit, and the market price is $5, then their consumer surplus is $(10-5) + (8-5) + (6-5) = $9$. This matches the area under the individual’s demand curve above $5 for 3 units.

Compensating Variation (CV)(补偿性变动)

English: Compensating variation (CV) is a monetary measure of how much compensation a consumer would need after a price increase (or would be willing to give up after a price decrease) to be as well off as before the price change. In other words, for a price increase, CV answers: “How much money must we give the consumer (at the new prices) to restore them to their original utility level?”. For a price decrease, CV is the amount of money we could take away (after the price drop) such that the consumer is just as well off as they were before the drop. CV is calculated using the consumer’s indirect utility function V ( p , m ) V(p,m) V(p,m) (the maximum utility given prices p p p and income m m m). For a price increase from p 0 p_0 p0 to p 1 p_1 p1 (with p 1 > p 0 p_1 > p_0 p1>p0) and initial income m m m, the compensating variation is defined by:
[V(p_1,; m + \text{CV}) ;=; V(p_0,; m),.]
Here CV is typically positive for a price increase (meaning the consumer needs extra income to compensate for higher prices). Solving this gives CV. Essentially, CV is the least extra money, at new prices, required to attain the old utility.

中文: 补偿性变动(CV)用货币来衡量在价格变化后需要怎样的补偿才能使消费者的福利恢复到原先的水平。换言之,对于价格上升,CV回答:“在新价格下,我们必须给消费者多少额外收入,才能使他恢复到价格变动前的效用水平?”。对于价格下降,CV表示价格下降后我们可以拿走多少钱(让消费者交出一部分节省的支出),使其效用刚好和降价前持平。CV通常通过消费者的间接效用函数 V ( p , m ) V(p,m) V(p,m)来计算(给定价格 p p p和收入 m m m时消费者能达到的最大效用)。如果价格从 p 0 p_0 p0上升到 p 1 p_1 p1 p 1 > p 0 p_1 > p_0 p1>p0),初始收入为 m m m,则补偿性变动CV满足:
[V(p_1,; m + \text{CV}) ;=; V(p_0,; m),.]
CV对于价格上升通常是正值(表示需要给消费者额外收入以补偿价格上涨带来的损失)。解此方程即可得到CV。本质上,CV是指在新价格下,为了使消费者达到原先效用水平所需的最少收入补偿。

Example: Suppose initially the price of a good is $2 and then rises to $3, reducing the consumer’s utility. Compensating variation asks: at the new higher prices, how much extra money would the consumer need in order to afford a bundle that gives them the same utility they had before? For instance, in the Lolita the cow example (who consumes cow feed and hay), when the price of cow feed rises from $0.5 to $1, the compensating variation was calculated as $0.125 ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=The%20CV%20can%20be%20calculated,5%2C3%29%20%3D%20%F0%9D%91%89%281%2C3%20%2B%20%F0%9D%90%B6%F0%9D%91%89)) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=1%208)). That is, giving Lolita an extra $0.125 at the new higher price of feed would make her as well off as she was originally (before the price increase). Formally, CV can be found by computing the difference in income needed: C V = m ′ − m CV = m' - m CV=mm, where m ′ m' m is the income that makes V ( p new , m ′ ) = V ( p old , m ) V(p_{\text{new}}, m') = V(p_{\text{old}}, m) V(pnew,m)=V(pold,m).

Important: CV is measured after the price change (at new prices). For a price increase, CV often exceeds the actual loss in consumer surplus, especially if the good is normal (because the consumer would prefer a cash transfer to just having avoided the price increase due to income effects). For a price decrease, CV is the money one would willingly give up and still enjoy the price drop’s benefit.

Equivalent Variation (EV)(等价变动)

English: Equivalent variation (EV) is another monetary measure of welfare change, answering the question: “How much money would we need to take away from the consumer before a price increase (at the old prices) to make them as badly off as they would be after the price increase?”. Equivalently, for a price increase, it’s the maximum amount the consumer would pay to avoid the price increase. For a price decrease, EV is the amount of money that would make the consumer indifferent to the price decrease if taken away beforehand (how much the consumer would pay for the price drop). Using the indirect utility function, for a price increase from p 0 p_0 p0 to p 1 p_1 p1, the equivalent variation E V EV EV is defined by:
[V(p_0,; m - \text{EV}) ;=; V(p_1,; m),.]
Here E V EV EV is the amount of income, at initial prices p 0 p_0 p0, that would reduce the consumer’s utility to the level after the price change. For a price increase, E V EV EV is typically positive (we’d have to take away money at the old prices to hurt the consumer by an equivalent amount as the impending price hike). Notably, for a price increase, equivalent variation is the consumer’s willingness to pay to avoid that price increase.

中文: 等价变动(EV)是另一种衡量福利变化的货币指标,回答的问题是:“在价格上涨发生之前(旧价格下),需要从消费者那里拿走多少钱,才能使其效用降低到与价格上涨后相同的水平?”。同理,对于降价,EV表示在降价发生之前,要从消费者手中拿走多少货币(相当于消费者愿意支付的金额),使其效用降低到与降价后相同(也就是他对降价所获得的福利)水平。利用间接效用函数表示,价格从 p 0 p_0 p0上涨到 p 1 p_1 p1的等价变动 E V EV EV定义为:
[V(p_0,; m - \text{EV}) ;=; V(p_1,; m),.]
这里 E V EV EV是在初始价格 p 0 p_0 p0下,为使消费者的效用降低到价格变化后水平所需减少的收入。对于价格上升, E V EV EV通常为
正值
(表示在旧价格下需要拿走一定的钱才能使消费者受到与未来涨价同等程度的损失)。特别地,对于价格上涨,等价变动数值上等于消费者为避免该涨价所愿意支付的最大金额

Example: In the Lolita example, the equivalent variation for the cow feed price increase (from $0.5 to $1) was found to be $0.125 as well ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=payment%2C%20she%20has%20a%20utility,cow%20feed%20rise%20to%20%241)). This was interpreted as the largest fee Lolita would pay up front (at the old prices) to avoid the price hike. In that example, because Lolita’s utility function was quasi-linear (money enters linearly), the EV and CV turned out equal (both $0.125) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=amount)) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=The%20CV%20can%20be%20calculated,5%2C3%29%20%3D%20%F0%9D%91%89%281%2C3%20%2B%20%F0%9D%90%B6%F0%9D%91%89)). In general, however, EV and CV can differ when income effects are present. For a normal good with a price increase: typically E V > C S > C V EV > CS > CV EV>CS>CV. This inequality means the amount a consumer would pay to avoid the price increase (EV) is greater than the lost consumer surplus, which in turn is greater than the amount needed to compensate them after the price increase (CV). The ranking reverses for a price decrease (EV < CS < CV for a normal good price drop). The differences arise because EV and CV account for income effect on utility differently: EV uses the initial situation, CV uses the new situation. If the good is normal, losing some income before the price increase (EV) hurts more than losing after (CV), hence E V > C V EV > CV EV>CV. If the good is inferior, these relationships could invert.

Using Demand Curve: If income effects are small (for example, with quasi-linear preferences where utility = v ( x ) + m v(x)+m v(x)+m), consumer surplus is a good approximation for both EV and CV ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=amount)). In fact, under quasi-linear utility, E V = C V = change in consumer surplus EV = CV = \text{change in consumer surplus} EV=CV=change in consumer surplus. But in general, EV and CV are more theoretically correct measures of welfare change than raw consumer surplus because they remain valid even with large price changes and income effects.

Summary: EV and CV are both ways to put a dollar value on the utility impact of price changes: EV asks how much money is equivalent to the change in advance, and CV asks how much money compensates after the change. Both are obtained from indirect utility:

  • For a price increase: EV = willingness to pay to avoid, CV = needed compensation after.
  • For a price decrease: EV = willingness to accept (to give up the gain), CV = the expenditure equivalent of the gain.

中文总结: EV和CV都是将价格变化造成的效用变化用货币衡量的方法:EV是在变化发生之前等效的货币量,CV是在变化发生之后所需补偿的货币量。利用间接效用函数公式:

  • 对于涨价:EV 是为避免涨价愿意支付的金额,CV 是涨价后需要得到的补偿金额。
  • 对于降价:EV 是愿意放弃降价好处的赔偿金额(相当于在降价前愿意接受的补偿),CV 是降价带来的效用提升相当于多少钱。

Practice Questions – Chapter 1 (Consumer Welfare)

Example Question 1 (Reservation Price): Steve consumes earplugs ( x x x) and other goods ( y y y). His utility is U ( x , y ) = v ( x ) + a y U(x,y)=v(x)+a y U(x,y)=v(x)+ay, increasing in both x x x and y y y. He has large wealth w w w. Suppose he currently owns n − 1 n-1 n1 earplug units (bought at total cost c c c for those n − 1 n-1 n1 units). Now he is considering buying the n n nth earplug, which costs price p n p_n pn. Answer the following:
(a) Write Steve’s utility if he stops at n − 1 n-1 n1 earplugs (no purchase of the n n nth) and spends remaining money on y y y. Write his utility if he buys the n n nth earplug (spending p n p_n pn).
(b) Using the definition of reservation price, show that the reservation price r n r_n rn for the n n nth earplug satisfies r n = 1 a [   v ( n ) − v ( n − 1 )   ] r_n = \frac{1}{a}[\,v(n) - v(n-1)\,] rn=a1[v(n)v(n1)]. (Hint: set the utilities in (a) equal and solve for the price that makes him indifferent.)
© If earplugs were perfectly divisible, what does the expression in (b) imply about the reservation price function r ( x ) r(x) r(x) in relation to the marginal utility v ′ ( x ) v'(x) v(x)?

问题1 示例(保留价格): Steve消费耳塞( x x x)和其他商品( y y y),效用函数 U ( x , y ) = v ( x ) + a y U(x,y)=v(x)+a y U(x,y)=v(x)+ay,对 x x x y y y均单调增加。他拥有足够多的财富 w w w。假设他目前已经购买了 n − 1 n-1 n1副耳塞(这些耳塞总成本为 c c c)。现在他考虑购买第 n n n副耳塞,价格为 p n p_n pn。回答下列问题:
(a) 分别写出如果Steve只保有 n − 1 n-1 n1副耳塞(不买第 n n n副)并将剩余钱花在 y y y上的效用,以及如果他购买第 n n n副耳塞(花费 p n p_n pn)后的效用。
(b) 利用保留价格的定义,证明第 n n n副耳塞的保留价格 r n r_n rn满足 r n = 1 a [   v ( n ) − v ( n − 1 )   ] r_n = \frac{1}{a}[\,v(n) - v(n-1)\,] rn=a1[v(n)v(n1)]。(提示:令(a)中两种情况下的效用相等,求使他无差异的价格。)
© 如果耳塞可以连续分割,(b)的表达式对比边际效用 v ′ ( x ) v'(x) v(x)暗示了保留价格函数 r ( x ) r(x) r(x)的什么性质?

Solution to Example 1:
(a) If Steve does not buy the n n nth earplug, he has n − 1 n-1 n1 earplugs and spends the saved money on y y y. His utility in that case:
[U_{no\ buy} = v(n-1) + a,(w - c),]
where c c c is the total cost of n − 1 n-1 n1 earplugs he already bought. If he does buy the n n nth earplug at price p n p_n pn, his earplug consumption becomes n n n and he has w − c − p n w-c-p_n wcpn left for other goods. His utility if he buys:
[U_{buy} = v(n) + a,(w - c - p_n),.]

(b) By definition, the reservation price r n r_n rn is the price that makes Steve just indifferent between buying or not buying the n n nth unit. So we set U n o   b u y = U b u y U_{no\ buy} = U_{buy} Uno buy=Ubuy and replace p n p_n pn with r n r_n rn:
[v(n-1) + a(w-c) ;=; v(n) + a(w-c-r_n),.]
The a ( w − c ) a(w-c) a(wc) and a ( w − c ) a(w-c) a(wc) cancel out from both sides, leaving:
[v(n-1) ;=; v(n) - a,r_n,.]
Rearrange to solve for r n r_n rn:
[a,r_n = v(n) - v(n-1)]
[\implies \quad r_n = \frac{1}{a}\big[,v(n) - v(n-1),\big],.]
This shows the reservation price for the n n nth earplug equals the incremental utility gain from having that extra unit, converted to dollar terms by dividing by a a a (which is Steve’s marginal utility of money).

© If earplugs were perfectly divisible, the difference v ( n ) − v ( n − 1 ) v(n) - v(n-1) v(n)v(n1) for a small increment becomes the derivative v ′ ( x ) v'(x) v(x). In that case, the reservation price function r ( x ) r(x) r(x) for an additional infinitesimal unit is:
[r(x) = \frac{1}{a} v’(x),.]
Thus, r ( x ) r(x) r(x) equals the marginal utility of earplugs (i.e. MRS between earplugs and money) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=Note%20that%20this%20implies%20that,%F0%9D%91%9B)). Intuitively, when goods are divisible, the consumer’s willingness to pay for a tiny extra amount is just their marginal utility for that amount (in dollar terms), which is exactly the condition p = v ′ ( x ) a p = \frac{v'(x)}{a} p=av(x). This result is consistent with the idea that at the margin, price equals marginal utility in optimum consumption.

Example Question 2 (EV and CV): Lolita, a cow, consumes two goods: cow feed ( x x x) and hay ( y y y). Her utility is U ( x , y ) = x − x 2 2 + y U(x,y) = x - \frac{x^2}{2} + y U(x,y)=x2x2+y. The price of hay is $1 (per unit) and initially the price of feed is p = 0.5 p=0.5 p=0.5 (per unit). Her income is m = 3 m=3 m=3 dollars.
(a) Find Lolita’s optimal bundle ( x ∗ , y ∗ ) (x^*,y^*) (x,y) at the initial price p = 0.5 p=0.5 p=0.5. Then find her optimal bundle when the price of feed increases to p = 1 p=1 p=1 (income still 3 3 3).
(b) Calculate the change in Lolita’s utility due to the price increase.
© Compute the equivalent variation (EV) for the price increase (the money she would pay to avoid it). Is this the same as the utility loss converted to dollars?
(d) Compute the compensating variation (CV) for the price increase (the money she’d need after the price hike to restore her initial utility). Compare EV, CV, and the change in consumer surplus for this quasilinear utility.

问题2 示例(等价变动 与 补偿变动): 有一头奶牛Lolita,只消费两种商品:牛饲料( x x x)和干草( y y y)。其效用函数 U ( x , y ) = x − x 2 2 + y U(x,y) = x - \frac{x^2}{2} + y U(x,y)=x2x2+y。干草价格为$1(每单位),初始情况下饲料价格 p = 0.5 p=0.5 p=0.5(每单位)。它的收入 m = 3 m=3 m=3美元。
(a) 求Lolita在初始价格 p = 0.5 p=0.5 p=0.5下的最优消费束 ( x ∗ , y ∗ ) (x^*,y^*) (x,y)。然后求饲料价格上涨到 p = 1 p=1 p=1(收入仍为3)时的最优消费束。
(b) 计算饲料涨价导致Lolita效用的变化量。
© 计算此次涨价的等价变动 (EV)(为避免涨价她愿意支付的钱)。这个数值是否等于效用损失直接换算成的美元?
(d) 计算此次涨价的补偿变动 (CV)(涨价后为使其恢复原有效用需要补偿的钱)。比较对于此拟线性效用,EV、CV与消费者剩余变化三者的关系。

Solution to Example 2:
(Sketch solution) Lolita’s utility can be optimized by first noting that x x x appears in a quadratic form. We set marginal utility of x x x equal to its price (MRS condition) to find optimum x x x. The marginal utility from x x x is M U x = 1 − x MU_x = 1 - x MUx=1x (since d U / d x = 1 − x dU/dx = 1 - x dU/dx=1x for U = x − x 2 / 2 + y U = x - x^2/2 + y U=xx2/2+y). The marginal utility of y y y is constant M U y = 1 MU_y = 1 MUy=1. At an interior optimum, we have M U x / M U y = p x / p y MU_x/MU_y = p_x/p_y MUx/MUy=px/py, i.e. 1 − x = p 1 - x = p 1x=p (because p y = 1 p_y=1 py=1). So the optimal x x x is x ∗ = 1 − p x^* = 1 - p x=1p as long as that is nonnegative. We also have that Lolita will spend the rest of her income on y y y. Now:

  • Initial ( p = 0.5 p=0.5 p=0.5): x ∗ = 1 − 0.5 = 0.5 x^* = 1 - 0.5 = 0.5 x=10.5=0.5 units of feed. Spending on feed = $0.5 * $0.5 = $0.25$. With income $3, she spends the remaining $2.75 on hay. So y ∗ = 2.75 y^* = 2.75 y=2.75 units of hay. Her utility at this bundle: U = 0.5 − 0.125 + 2.75 = 3.125 U = 0.5 - 0.125 + 2.75 = 3.125 U=0.50.125+2.75=3.125 (since x − x 2 / 2 = 0.5 − 0.125 = 0.375 x - x^2/2 = 0.5 - 0.125 = 0.375 xx2/2=0.50.125=0.375 and plus y y y gives 3.125 3.125 3.125).

  • After price increase ( p = 1 p=1 p=1): x ∗ = 1 − 1 = 0 x^* = 1 - 1 = 0 x=11=0 (she buys no feed at the higher price because the marginal utility from the first unit, 1, equals the price 1 – actually she’s indifferent at x = 0 x=0 x=0, so effectively she drops consumption to zero). She will spend all $3 on hay. So new bundle: ( x , y ) = ( 0 ,    3 ) (x,y) = (0,\;3) (x,y)=(0,3). Utility now: U = 0 − 0 + 3 = 3.0 U = 0 - 0 + 3 = 3.0 U=00+3=3.0.

(b) The utility drops from 3.125 3.125 3.125 to 3.0 3.0 3.0, a loss of 0.125 0.125 0.125 utility units. This is a fairly small loss in utility.

© Equivalent Variation (EV): We ask how much money taken away at the old prices would reduce Lolita’s utility by the same 0.125 0.125 0.125. At the old price p = 0.5 p=0.5 p=0.5, Lolita’s marginal utility of money (spent on y y y) is 1 (because utility increases one-for-one with hay dollars). So to reduce her utility by 0.125 0.125 0.125 at the old situation, we would take away $0.125. Indeed, we can find EV by solving V ( p = 0.5 ,    m − E V ) = U after = 3.0 V(p=0.5,\; m - EV) = U_{\text{after}} = 3.0 V(p=0.5,mEV)=Uafter=3.0. We have V ( 0.5 , m ) = m + ( 1 − p ) 2 / 2 V(0.5, m) = m + (1-p)^2/2 V(0.5,m)=m+(1p)2/2 (from earlier indirect utility derivation) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%3D%20,1%20%E2%88%92%20%F0%9D%91%9D)). Initially V ( 0.5 , 3 ) = 3.125 V(0.5,3) = 3.125 V(0.5,3)=3.125. We need V ( 0.5 , 3 − E V ) = 3.0 V(0.5, 3 - EV) = 3.0 V(0.5,3EV)=3.0. Because utility in this quasi-linear case is linear in m m m, it’s immediate that $EV = $0.125$. In plain terms, Lolita would have paid up to $0.125 to avoid the price increase. This $0.125 is exactly equal to the utility loss (0.125) expressed in dollars (since M U y = 1 MU_y=1 MUy=1). In this example, EV equals the drop in consumer surplus, which is also $0.125 (initial CS and final CS difference).

(d) Compensating Variation (CV): Now we ask how much compensation at new prices would restore her old utility. At the new price p = 1 p=1 p=1, Lolita is consuming only hay, so again each dollar yields 1 utility (still linear in money). To regain the 0.125 0.125 0.125 utility loss, we must give her $0.125. Formally, we solve V ( 1 ,   3 + C V ) = U before = 3.125 V(1,\, 3 + CV) = U_{\text{before}} = 3.125 V(1,3+CV)=Ubefore=3.125. At p = 1 p=1 p=1, V ( 1 , m ) = m V(1,m) = m V(1,m)=m (since she buys only y y y if feed is expensive). Thus we need 3 + C V = 3.125 3 + CV = 3.125 3+CV=3.125, so $CV = $0.125$. So in this case CV = EV = $0.125. All three measures – EV, CV, and Δ C S \Delta CS ΔCS – coincide in this quasi-linear utility scenario. In general, for more complex preferences:

  • EV and CV might not equal Δ C S \Delta CS ΔCS.
  • Usually E V ≥ Δ C S ≥ C V EV \ge \Delta CS \ge CV EVΔCSCV for a normal good price increase (the compensation needed after is less than the amount one would pay to avoid).
    Here, because utility is linear in y y y (money), income changes do not affect x x x consumption (no income effect), making consumer surplus an exact measure of welfare change, hence E V = C V = Δ C S EV = CV = \Delta CS EV=CV=ΔCS.

Predicted Exam Questions – Chapter 1:

  1. Conceptual Short Answer: What is the difference between equivalent variation (EV) and compensating variation (CV) for a price change? Which one corresponds to a consumer’s “willingness to pay” to avoid a price increase, and which corresponds to the compensation needed after the price change?

    • Answer: EV and CV are both monetary measures of the welfare change from a price shift, but taken at different reference situations. Equivalent variation (EV) measures how much money would leave the consumer indifferent before the price change. It represents the consumer’s willingness to pay to avoid a price increase (or willingness to accept to forgo a price decrease). Compensating variation (CV) measures how much money would restore the consumer’s utility after the price change. It is the amount of compensation needed after a price increase to bring the consumer back to their original utility (or the amount one could take away after a price decrease and still leave them as well off as initially). For a price increase, EV is the maximum the consumer would pay to prevent the increase (so EV = WTP to avoid), while CV is the minimum compensation required after the increase. For a price…(continued)Answer (continued): For a price increase, EV represents the maximum amount the consumer would pay (sacrifice) to prevent the price hike – essentially the willingness to pay to avoid the increase. CV represents the minimum amount of money you would need to give the consumer after the price increase to compensate for it. For a price decrease, the roles reverse: EV is how much the consumer would accept to forgo the price drop (willingness to accept), and CV is how much money you could take away after the price drop and still leave them as well off as before. In summary, EV = WTP to avoid a loss (or WTA to forgo a gain) measured at initial prices, while CV = compensation after the change.
  2. True/False: “If a consumer’s utility is quasilinear in money (income), then for any price change, the compensating variation, equivalent variation, and the change in consumer surplus will all be equal.”

    • Answer: True. With quasi-linear utility (money enters utility linearly), there are no income effects on the consumption of the other good. In this special case, consumer surplus is an exact money-metric of utility change, so E V = C V = EV = CV = EV=CV= the change in consumer surplus. (In general, this statement is false for goods with income effects, but true under quasi-linearity.)

Chapter 2: Producer Welfare Measures(第二章:生产者福利度量)

Producer Surplus(生产者剩余)

English: Producer surplus (PS) is the monetary measure of producers’ net benefit from selling goods at the market price. It is defined as the difference between the amount producers receive for selling a good (revenue) and the minimum amount they would be willing to accept to produce those units. The minimum acceptable amount is typically the total variable cost of producing the goods (area under the supply curve). Graphically, producer surplus is the area above the supply curve and below the market price, up to the quantity sold ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20For%20consumers%E2%80%99%20surplus%2C%20get,measure%20of%20aggregate%20consumer%20welfare)). It represents the extra reward producers get for selling at a market price higher than their marginal cost for those units. For example, if a firm would be willing to sell a widget for as low as $5 (because that’s the cost of making it) but the market price is $8, the firm earns a surplus of $3 on that unit. Summing across all units sold gives total producer surplus. Mathematically, if P s ( q ) P_{\text{s}}(q) Ps(q) is the inverse supply (marginal cost) function, equilibrium price P ∗ P^* P and quantity Q ∗ Q^* Q, then:
[ PS ;=; P^* \times Q^* ;-; \int_{0}{Q*} P_{\text{s}}(q),dq,.]
For a linear supply through the origin (e.g. P = c Q P = cQ P=cQ), this simplifies to a triangle: P S = 1 2 P ∗ Q ∗ PS = \frac{1}{2} P^* Q^* PS=21PQ (since the area under supply is half the rectangle). If supply has a positive intercept (fixed cost or minimum price to produce), the area calculation adjusts accordingly.

中文: **生产者剩余(PS)衡量生产者因以市场价格出售商品所获得的净收益,用货币表示。它定义为生产者卖出商品获得的收入与其愿意接受的最低收入之间的差额(后者通常等于生产这些商品的可变成本总和)。在图形上,生产者剩余对应于供给曲线以上、市场价格线以下的面积,一直延伸到销售的数量 ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=curve%20and%20the%20price%20line,measure%20of%20aggregate%20consumer%20welfare))。它表示生产者以高于边际成本的价格出售产品所得到的额外收益。例如,如果一家厂商愿意以$5的价格出售一个小部件(因为这是其生产成本),但市场价格是$8,那么该厂商在该产品上获得$3的剩余。将所有售出的单位累加,就得到总生产者剩余。数学上,若 P s ( q ) P_{\text{s}}(q) Ps(q)表示反供给(边际成本)函数,均衡价格为 P ∗ P^* P,数量为 Q ∗ Q^* Q,则:
[ PS ;=; P^
\times Q^
;-; \int_{0}{Q*} P_{\text{s}}(q),dq,.]
对于穿过原点的线性供给(如 P = c Q P = cQ P=cQ),PS是一个三角形面积,可简化为 P S = 1 2 P ∗ Q ∗ PS = \frac{1}{2}P^* Q^* PS=21PQ(因为供给曲线下的面积是该矩形面积的一半)。如果供给曲线有正截距(存在固定成本或最低生产价格),则计算时需相应调整面积。

Producer Surplus vs. Profit: It’s important to distinguish producer surplus from profit. Producer surplus is revenue minus variable costs. If the firm has no fixed costs, then producer surplus equals profit. However, if there are fixed costs (costs that do not vary with output), profit is P S PS PS minus those fixed costs. For example, if a firm has $100 in fixed costs (e.g. equipment) and earns a producer surplus of $120, its actual profit is $120 - $100 = $20. In short run analysis, producer surplus can be used as a measure of operating profit (ignoring sunk fixed costs). In long run, with all costs variable, producer surplus over all units equals economic profit.

Intuition: Producer surplus represents the “extra” payoff for producers. A supply curve can be viewed as indicating the marginal cost or reservation price to produce each additional unit. When market price is above marginal cost, producers gain a surplus on that unit. The first units produced (which had low cost) earn the most surplus. As output increases, marginal costs rise (for typical supply), so surplus per unit diminishes. Producer surplus will increase if the market price rises (producers earn more on each unit and possibly produce more units), and will decrease if production costs rise or price falls.

(No separate practice question is given here for producer surplus alone, since the following chapter’s examples integrate both consumer and producer surplus calculations.)

Chapter 3: Social Welfare, Market Efficiency, and Tax Incidence(第三章:社会福利、市场效率与税负归宿)

Aggregating Consumer and Producer Welfare: In a competitive market, social welfare is often measured as the sum of consumer surplus and producer surplus ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=The%20aggregate%20welfare%20of%20multiple,welfare%20measures%20across%20all%20producers%2Fconsumers)) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20For%20consumers%E2%80%99%20surplus%2C%20get,measure%20of%20aggregate%20consumer%20welfare)). This total surplus represents the total net benefit to society (buyers + sellers) from trade in that market. An allocation of resources is considered efficient in the Pareto sense (with no externalities or market failures) if it maximizes this total surplus – meaning no one can be made better off without making someone else worse off. In a free market equilibrium (absent distortions), the quantity where supply equals demand maximizes total surplus. At that equilibrium, all units where the willingness to pay exceeds the cost of production are traded, and any unit beyond would have cost > value, so it’s not produced – this achieves Pareto efficiency in that single market.

(image) Illustration: Consumer surplus (blue) and producer surplus (red) in a supply-demand graph. At the competitive equilibrium ( Q ∗ , P ∗ Q^*, P^* Q,P), social welfare (total surplus) is maximized and equals the area of triangle F (CS) plus triangle G (PS) (3.5 Demand, Supply, and Efficiency - Principles of Economics 3e | OpenStax).

中文: 消费者和生产者福利的总和: 在一个竞争市场中,社会福利常用消费者剩余和生产者剩余之和来衡量 ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=The%20aggregate%20welfare%20of%20multiple,welfare%20measures%20across%20all%20producers%2Fconsumers)) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20For%20consumers%E2%80%99%20surplus%2C%20get,measure%20of%20aggregate%20consumer%20welfare))。这个总剩余代表该市场交易所带给社会(买卖双方)的净总利益。如果没有外部性或市场失灵,那么当总剩余达到最大时,资源配置被认为是帕累托有效的——此时无法在不使他人境况变差的情况下让任何人变得更好。自由市场均衡(无扭曲的情况下)通常在供需相等的数量下最大化总剩余。在该均衡下,所有愿意支付价格高于生产成本的单位都得以交易,而任何生产成本高于价值的单位都不会生产——这使(单个市场的)配置达到帕累托效率。

(image) 图示:供求图中消费者剩余(蓝色)和生产者剩余(红色)。在竞争均衡点( Q ∗ , P ∗ Q^*, P^* Q,P),社会福利(总剩余)最大化,等于三角形F(消费者剩余)加三角形G(生产者剩余)的面积 (3.5 Demand, Supply, and Efficiency - Principles of Economics 3e | OpenStax)。

Deadweight Loss and Market Distortions(无谓损失与市场扭曲)

When a policy or market distortion (such as a tax, price control, quota, etc.) prevents the market from reaching the efficient equilibrium quantity, it typically creates a deadweight loss (DWL). Deadweight loss is the loss in total surplus that occurs because the traded quantity is below the efficient level. Some potential surplus that would have been realized (from trades where willingness to pay exceeds cost) is not realized, making society worse off. DWL is represented by the area of the “missing” surplus – usually a triangle between the demand and supply curves, from the restricted quantity to the efficient quantity.

For example, suppose a per-unit tax is imposed on a good. A tax drives a wedge between what consumers pay and what producers receive. This usually reduces the equilibrium quantity traded (to Q tax Q_{\text{tax}} Qtax) and raises the consumer price while lowering the price received by producers. Consumer surplus falls (buyers pay more and buy less), producer surplus falls (sellers receive less and sell less), and the government collects tax revenue equal to ( tax ) × Q tax (\text{tax}) \times Q_{\text{tax}} (tax)×Qtax. Part of the lost CS and PS is transferred to the government as revenue, but the rest becomes deadweight loss – surplus that no one gets, arising from the reduction in trade. The DWL is typically a triangle whose base is the reduction in quantity and height is the amount of the tax (or difference between supply and demand prices). The formula for the deadweight loss of a small tax t t t in a market with supply elasticity E s E_s Es and demand elasticity E d E_d Ed can be approximated as:
[ DWL \approx \frac{1}{2} \times t \times \Delta Q ,]
where Δ Q \Delta Q ΔQ is the decrease in quantity due to the tax. With linear demand and supply, Δ Q \Delta Q ΔQ is proportional to t t t, so D W L DWL DWL grows with t 2 t^2 t2 (quadratically). In general, deadweight loss increases with the elasticity of supply or demand (more responsive quantities mean a larger reduction in Q Q Q for a given wedge) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=,ii%29%20constant)) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%3D%20,250%F0%9D%91%8F%F0%9D%91%A1)). It also increases with the size of the tax (non-linearly: doubling the tax more than doubles the DWL).

(image) Impact of a per-unit tax: A tax of $0.5 drives a wedge between the price consumers pay ( P c P_c Pc) and the price producers receive ( P p P_p Pp). Quantity falls from Q 0 Q_0 Q0 to Q 1 Q_1 Q1. Consumers’ surplus (blue area) shrinks; producers’ surplus (red area) shrinks; the government gains revenue (green rectangle). The deadweight loss is the yellow triangle – surplus lost due to trades that no longer occur. Note: The tax burden is shared; here consumers pay a higher price (bearing part of the tax) and producers receive a lower price (bearing the rest). The division depends on relative elasticities.*

中文: 当一个政策或市场扭曲(如税收、价格管制、配额等)使市场无法达到有效的均衡数量时,通常会产生无谓损失(DWL)。无谓损失是指总剩余的减少,这种减少源于交易数量低于有效水平。一些本可以实现的潜在剩余(那些愿付价格高于成本的交易)没有实现,导致社会福利降低。DWL通常表现为“缺失”的剩余面积——通常是需求曲线和供给曲线之间的一个三角形,其底对应受限制的数量减少,顶点对应效率数量。

例如,对某商品征收从量税(每单位税)将税收扭曲引入市场。税收在消费者支付价和生产者收到价之间造成一个楔子。通常结果是交易数量减少 Q tax Q_{\text{tax}} Qtax,消费者支付价格上升,生产者收到价格下降。消费者剩余减少(买家支付更多且买更少),生产者剩余减少(卖家收到更少且卖更少),政府获得税收收入等于“税额 × Q tax Q_{\text{tax}} Qtax”。消费者和生产者损失的一部分剩余转移给了政府(税收收入),但还有一部分成为无谓损失——由于交易减少而无人获得的剩余。DWL通常是一个三角形,其底边是数量减少 Δ Q \Delta Q ΔQ,高是税额大小。小额税 t t t造成的无谓损失可近似 1 2 × t × Δ Q \frac{1}{2} \times t \times \Delta Q 21×t×ΔQ。在供给和需求近似线性的情况下, Δ Q \Delta Q ΔQ约与 t t t成正比,因此DWL随税额平方增长。一般而言,供需弹性越高,无谓损失越大(因为相同税楔导致的数量减少越多) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=,ii%29%20constant)) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%3D%20,250%F0%9D%91%8F%F0%9D%91%A1));税额越大,无谓损失增加越是非线性的(例如将税额加倍会使DWL增加四倍)。

(image) 从量税的影响: $0.5的税在消费者支付价( P c P_c Pc)和生产者收到价( P p P_p Pp)之间驱动了一个楔子。交易量从 Q 0 Q_0 Q0降至 Q 1 Q_1 Q1。消费者剩余(蓝色)减少;生产者剩余(红色)减少;政府获得税收收入(绿色矩形)。无谓损失是黄色三角形——由于不再发生的交易而损失的剩余。注意:税负由买卖双方分担;在此例中,消费者支付更高价格(承担部分税负),生产者收到更低价格(承担其余部分)。税负的分担取决于供需弹性的相对大小。*

Tax Incidence(税负归宿)

Tax incidence refers to how the burden of a tax is split between buyers and sellers. It does not depend on whom the tax is legally imposed on; rather, it depends on the relative price elasticities of demand and supply. If demand is very inelastic (consumers aren’t sensitive to price) and supply is elastic, consumers bear most of the tax burden – the price paid by consumers rises almost by the full amount of the tax, while producers’ price doesn’t fall much. Conversely, if supply is inelastic (producers can’t easily reduce output) and demand is elastic, producers bear more of the tax burden (the price received by producers falls nearly the full tax, consumers’ price rises little). In general: the side of the market that is more inelastic will bear a larger share of the tax burden. This is because that side has fewer alternatives and will not reduce quantity as much when the price moves against them, so they end up absorbing more of the cost.

For example, if the demand for insulin is almost perfectly inelastic (patients need it regardless of price), a tax on insulin will mostly be paid by consumers (through higher prices), since they will continue buying nearly the same amount. If the supply of some agricultural good is very inelastic in the short run (farmers have fixed harvest in short term), a tax will mainly hit producers (lower farm-gate prices), since output won’t change much. The tax incidence can be quantified: if demand elasticity is E d E_d Ed and supply elasticity is E s E_s Es, the fraction of tax borne by consumers is roughly E s E d + E s \frac{E_s}{E_d + E_s} Ed+EsEs and by producers E d E d + E s \frac{E_d}{E_d + E_s} Ed+EsEd (using absolute values for elasticities). So more elastic side bears less.

中文: 税负归宿指税收负担在买方和卖方之间的分摊。它并不取决于税款在法律上由谁缴纳,而取决于需求和供给的相对价格弹性。如果需求非常无弹(消费者对价格不敏感)、供给有弹性,那么消费者承担大部分税负——消费者支付的价格几乎上涨等于税额,而生产者收到价格则下降很少。反之,如果供给无弹性(生产者难以减少产出)、需求有弹性,那么生产者承担更多税负(生产者得到的价格几乎下降等于税额,消费者支付价格仅小幅上升)。一般规律:哪一侧的市场弹性较小,哪一侧承担较大的税负。这是因为弹性较小的一方缺乏替代选择,当价格不利变化时其购买或供应数量减少较少,因此最终吸收了更多税收成本。

例如,如果胰岛素的需求几乎完全无弹性(患者无论价格都需要),那么对胰岛素征税将主要由消费者承担(通过更高价格支付),因为他们购买数量几乎不变。又如某农产品在短期内供给非常无弹性(农民短期内产量固定),那么税收主要由生产者承担(农场收到价格降低),因为产量变化不大。税负归宿可定量描述:若需求弹性为 E d E_d Ed,供给弹性为 E s E_s Es,消费者承担税负约占 E s E d + E s \frac{E_s}{E_d + E_s} Ed+EsEs,生产者承担约 E d E d + E s \frac{E_d}{E_d + E_s} Ed+EsEd(弹性取绝对值)。因此弹性更大的一方承担较少税负。

Practice Question – Tax and Welfare (Combined Example)

Example Question 3 (Market Equilibrium and Tax): In the bubble tea market, there are two consumers and multiple firms:

  • Consumer 1’s inverse demand: p = 20 − 4 q p = 20 - 4q p=204q (for her individual demand q q q).
  • Consumer 2’s inverse demand: p = 15 − 2 q p = 15 - 2q p=152q.
  • There are 10 identical firms, each with inverse supply: p = 5 q p = 5q p=5q (for an individual firm’s output q q q).

(a) Derive the aggregate (market) demand curve and aggregate supply curve.
(b) Find the competitive equilibrium price and quantity in the market (before any tax). Calculate the consumer surplus and producer surplus at this equilibrium.
© Suppose a per-unit tax of $0.5 is imposed on firms. Find the new equilibrium price paid by consumers, the price received by producers, and the quantity sold. Calculate the deadweight loss due to the tax.

问题3 示例(市场均衡与税收): 在珍珠奶茶市场中,有两个消费者和多个厂商:

  • 消费者1的反需求函数: p = 20 − 4 q p = 20 - 4q p=204q (个人需求量 q q q对应的价格)。
  • 消费者2的反需求函数: p = 15 − 2 q p = 15 - 2q p=152q
  • 有10个相同的厂商,每个厂商的反供给函数: p = 5 q p = 5q p=5q (单个厂商产量 q q q对应的价格)。

(a) 推导市场的总需求曲线和总供给曲线。
(b) 求出竞争性市场均衡的价格和数量(无税情况下),并计算该均衡下的消费者剩余和生产者剩余。
© 假设对厂商征收每单位$0.5的从量税。求征税后的消费者支付价、生产者收到价和交易数量的新均衡。计算税收造成的无谓损失。

Solution to Example 3:
(a) Aggregate Demand: To get market demand, we horizontal sum the individual demand curves of Consumer 1 and 2. Each consumer’s demand goes to zero when price exceeds their choke price (maximum willingness to pay). Consumer 1’s demand: q 1 = f ( p ) = 5 − 0.25 p q_1 = f(p) = 5 - 0.25p q1=f(p)=50.25p (rearranged from p = 20 − 4 q 1 p = 20 - 4q_1 p=204q1 for p ≤ 20 p\le20 p20; if p > 20 p>20 p>20, q 1 = 0 q_1=0 q1=0). Consumer 2’s demand: q 2 = 7.5 − 0.5 p q_2 = 7.5 - 0.5p q2=7.50.5p (from p = 15 − 2 q 2 p = 15 - 2q_2 p=152q2, valid for p ≤ 15 p \le 15 p15, else q 2 = 0 q_2=0 q2=0).

For a given price p p p:

  • If p > 20 p > 20 p>20: q 1 = 0 q_1=0 q1=0, q 2 = 0 q_2=0 q2=0, so Q = 0 Q=0 Q=0.
  • If 15 < p ≤ 20 15 < p \le 20 15<p20: Consumer 1 will buy some (since p ≤ 20 p\le20 p20) but Consumer 2’s demand is zero ( p > 15 p>15 p>15). So in this range, Q = q 1 = 5 − 0.25 p Q = q_1 = 5 - 0.25p Q=q1=50.25p.
  • If p ≤ 15 p \le 15 p15: Both consumers buy. So Q = q 1 + q 2 = ( 5 − 0.25 p ) + ( 7.5 − 0.5 p ) = 12.5 − 0.75 p Q = q_1 + q_2 = (5 - 0.25p) + (7.5 - 0.5p) = 12.5 - 0.75p Q=q1+q2=(50.25p)+(7.50.5p)=12.50.75p.

Thus, the market demand curve (piecewise) is:
[
Q_d§ = \begin{cases}
0, & p > 20; \[6pt]
5 - 0.25p, & 15 < p \le 20; \[6pt]
12.5 - 0.75p, & 0 \le p \le 15~.
\end{cases}
]
In terms of inverse demand (price as function of Q Q Q): The second segment corresponds to small quantity (only consumer 1 active) when 0 < Q ≤ 5 0 < Q \le 5 0<Q5: there p = 20 − 4 Q p = 20 - 4Q p=204Q (since Q = q 1 Q=q_1 Q=q1 in that range). The third segment for larger Q Q Q (both active, 5 < Q ≤ 12.5 5 < Q \le 12.5 5<Q12.5) we solve 12.5 − 0.75 p = Q 12.5 - 0.75p = Q 12.50.75p=Q, giving p = 12.5 − Q 0.75 = 16.67 − 4 3 Q p = \frac{12.5 - Q}{0.75} = 16.67 - \frac{4}{3}Q p=0.7512.5Q=16.6734Q. (Note: At Q = 5 Q=5 Q=5, p = 15 p=15 p=15 which connects smoothly). So overall, demand goes from price 20 down to 0 with a kink at price 15.

Aggregate Supply: We horizontal sum 10 identical firm supply curves. A single firm: q f = 0.2 p q_f = 0.2p qf=0.2p (from p = 5 q p = 5q p=5q, so q = p / 5 q = p/5 q=p/5). For 10 firms, total supply Q s = 10 × 0.2 p = 2 p Q_s = 10 \times 0.2p = 2p Qs=10×0.2p=2p. Inverse supply: p = 1 2 Q s p = \frac{1}{2}Q_s p=21Qs. This is valid for p ≥ 0 p \ge 0 p0 (we assume firms supply nothing at negative price). So the market supply curve is Q s = 2 p Q_s = 2p Qs=2p, or p = 0.5 Q p = 0.5 Q p=0.5Q. It’s a straight line through origin with slope 0.5.

(b) Equilibrium before tax: The equilibrium occurs where aggregate demand = aggregate supply. We need to find P ∗ P^* P such that Q d ( P ∗ ) = Q s ( P ∗ ) Q_d(P^*) = Q_s(P^*) Qd(P)=Qs(P). We must consider the relevant segment of demand. Guess and check: If the equilibrium price is above 15, then only Consumer 1 demands. In that range, Q d = 5 − 0.25 p Q_d = 5 - 0.25p Qd=50.25p. Setting 5 − 0.25 p = 2 p 5 - 0.25p = 2p 50.25p=2p (supply), we get 5 = 2.25 p 5 = 2.25p 5=2.25p, so p = 2.22 p = 2.22 p=2.22 – which is <15, so our assumption of being in the high-price segment was wrong (the solution fell into the low segment). So equilibrium price must actually be ≤ 15 \le 15 15 (both consumers active). In the low-price segment, demand Q d = 12.5 − 0.75 p Q_d = 12.5 - 0.75p Qd=12.50.75p. Solve 12.5 − 0.75 p = 2 p 12.5 - 0.75p = 2p 12.50.75p=2p:
[12.5 = 2.75p,]
[p^* = \frac{12.5}{2.75} = 4.545… \ (\approx $4.55).]
This p ∗ = 4.545 p^* = 4.545 p=4.545 is indeed ≤ 15 \le 15 15, consistent with using the combined demand formula. Now Q ∗ = Q s = 2 p ∗ = 2 ∗ 4.545 = 9.09 Q^* = Q_s = 2p^* = 2 * 4.545 = 9.09 Q=Qs=2p=24.545=9.09 (million cups, for example). This Q ∗ Q^* Q is ≤ 12.5 \le 12.5 12.5, so within the correct demand segment. Thus, the equilibrium is approximately $P^* \approx $4.55$, Q ∗ ≈ 9.09 Q^* \approx 9.09 Q9.09 (in whatever unit quantity is measured, say million cups).

Now, consumer surplus (CS): We calculate area under demand above price, up to Q ∗ Q^* Q. Since Q ∗ = 9.09 Q^* = 9.09 Q=9.09 falls in the region where both consumers are buying, it’s easiest to compute CS as sum of CS for each consumer. Consumer 1 buys q 1 = 5 − 0.25 ( 4.545 ) = 5 − 1.136 = 3.864 q_1 = 5 - 0.25(4.545) = 5 - 1.136 = 3.864 q1=50.25(4.545)=51.136=3.864 (approx). Her maximum willingness to pay for the first unit was up to $20, which linearly decreases to $4.545 for her last unit. So her individual CS is area of a triangle: 1 2 ( 20 − 4.545 ) ∗ 3.864 ≈ 29.84 \frac{1}{2}(20 - 4.545) * 3.864 \approx 29.84 21(204.545)3.86429.84 (in whatever currency units, say million $). Consumer 2 buys q 2 = 7.5 − 0.5 ( 4.545 ) = 7.5 − 2.273 = 5.227 q_2 = 7.5 - 0.5(4.545) = 7.5 - 2.273 = 5.227 q2=7.50.5(4.545)=7.52.273=5.227. Her willingness to pay goes from $15 down to $4.545 for the last unit. Her CS = 1 2 ( 15 − 4.545 ) ∗ 5.227 ≈ 27.34 \frac{1}{2}(15 - 4.545)*5.227 \approx 27.34 21(154.545)5.22727.34. Total CS ≈ 29.84 + 27.34 = 57.18 (million $). (We could also compute CS as one big area: a triangle from p = 15 p=15 p=15 down to p ∗ p^* p for consumer 2’s portion plus another triangle from p = 20 p=20 p=20 to p = 15 p=15 p=15 for consumer 1’s portion. The sum is the same.)

Producer surplus (PS): At $P^* ≈ $4.545$, each firm produces q f = 0.2 ∗ 4.545 = 0.909 q_f = 0.2*4.545 = 0.909 qf=0.24.545=0.909; total Q = 9.09 Q=9.09 Q=9.09. The supply curve starts at 0, so PS is a triangle under price and above supply: 1 2 ∗ Q ∗ ∗ ( P ∗ − 0 ) = 1 2 ∗ 9.09 ∗ 4.545 ≈ 20.68 \frac{1}{2} * Q^* * (P^* - 0) = \frac{1}{2} * 9.09 * 4.545 ≈ 20.68 21Q(P0)=219.094.54520.68. So PS ≈ 20.7 (million $).

(It’s fine if a bit of rounding occurs; one could also integrate supply: ∫ 0 9.09 0.5 Q   d Q = 0.25 ∗ ( 9.09 ) 2 = 20.68 \int_0^{9.09} 0.5Q\, dQ = 0.25*(9.09)^2 = 20.68 09.090.5QdQ=0.25(9.09)2=20.68, matches the triangle formula.)

So at equilibrium, total surplus = CS + PS ≈ 77.9. This is the maximum social welfare in this market with no distortions.

© Effects of a $0.5 per-unit tax: The tax on firms effectively raises the supply curve: for any quantity Q Q Q, firms require 0.5 0.5 0.5 higher price to supply it. Equivalently, the supply function becomes Q s = 2 ( P producer ) Q_s = 2(P_{\text{producer}}) Qs=2(Pproducer) but P consumer = P producer + 0.5 P_{\text{consumer}} = P_{\text{producer}} + 0.5 Pconsumer=Pproducer+0.5. We can find the new equilibrium by shifting the supply curve up by 0.5 (or demand down by 0.5, conceptually similar).

New equilibrium quantity: Solve 12.5 − 0.75 p c = 2 ( p c − 0.5 ) 12.5 - 0.75p_c = 2(p_c - 0.5) 12.50.75pc=2(pc0.5). Here p c p_c pc is price consumers pay, and p p = p c − 0.5 p_p = p_c - 0.5 pp=pc0.5 is price producers get. The left side is demand (both consumers active likely still, we should verify after) and the right is supply: 2 p p = 2 ( p c − 0.5 ) 2p_p = 2(p_c - 0.5) 2pp=2(pc0.5). So:
[12.5 - 0.75p_c = 2p_c - 1,]
[12.5 + 1 = 2p_c + 0.75p_c,]
[13.5 = 2.75p_c,]
[p_c^{new} = \frac{13.5}{2.75} = 4.909,.]
Thus consumers pay ~$$4.91$. Then producers receive $p_p^{new} = 4.909 - 0.5 = $4.409$. The new quantity Q n e w = 2 ∗ p p n e w = 2 ∗ 4.409 = 8.818 Q^{new} = 2 * p_p^{new} = 2 * 4.409 = 8.818 Qnew=2ppnew=24.409=8.818. (We check demand: 12.5 − 0.75 ∗ 4.909 = 12.5 − 3.681 = 8.818 12.5 - 0.75*4.909 = 12.5 - 3.681 = 8.818 12.50.754.909=12.53.681=8.818, consistent.) So equilibrium with tax: Q tax ≈ 8.82 Q_{\text{tax}} ≈ 8.82 Qtax8.82, $P_{\text{consumer}} ≈ $4.91 ∗ ∗ , ∗ ∗ **, ** ,P_{\text{producer}} ≈ $4.41$. Consumers pay about $0.36 more than before, and producers receive $0.14 less than before – indicating consumers bear about 72% of the $0.50 tax and producers ~28%, which aligns with our elasticity ratios (demand was a bit less elastic than supply here).

Now, deadweight loss: The quantity has fallen from 9.09 to 8.82, a drop of 0.27. The lost surplus is a small triangle. We can compute its area as 1 2 ∗ 0.5 ∗ 0.27 ≈ 0.0675 \frac{1}{2} * 0.5 * 0.27 ≈ 0.0675 210.50.270.0675 (in millions $). To double-check via surplus changes: originally total surplus ~77.9. After tax, we have: new CS + new PS + government revenue.

  • New CS: consumers now pay 4.909 for up to 8.818 units. We can compute CS similarly as before (sum for each consumer). This will come out to roughly 54.1.
  • New PS: producers get 4.409, supply 8.818, PS = ½ * 8.818 * 4.409 ≈ 19.45.
  • Government revenue: tax * Q = 0.5 * 8.818 = 4.409.
    Summing: CS 54.1 + PS 19.45 + Rev 4.409 = 77.959, which is about 0.07 less than 78.03 (which was the initial total surplus 77.9 with rounding). The small difference ~0.07 (million $) is indeed the DWL. So deadweight loss ≈ $0.07 (million). This is the area of the triangle between 8.818 and 9.09 under demand above supply.

In conclusion, the tax causes a reduction in quantity and creates a deadweight loss. Consumer surplus fell (from 57.18 to ~54.1) and producer surplus fell (20.7 to ~19.45). The tax revenue (4.41) accounts for part of those losses, and the remainder 0.07 is the net loss of welfare. The DWL is relatively small here because the tax is small and demand/supply are not extremely elastic.

Predicted Exam Questions – Chapter 3:

  1. Multiple Choice (Tax Incidence): If demand for a product is much more price-inelastic than supply, and a per-unit tax is imposed on the product, what is the most likely outcome?
    A. Consumers and producers share the tax burden equally.
    B. Consumers bear most of the tax burden through a higher price.
    C. Producers bear most of the tax burden through a lower received price.
    D. The tax causes no deadweight loss because quantity doesn’t change.

    • Answer: B. When demand is more inelastic than supply, consumers will bear most of the tax burden ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=,ii%29%20constant)). The price paid by consumers will rise nearly by the full amount of the tax, whereas the price received by producers falls only a little. (DWL will still occur if the quantity falls, albeit smaller if demand is highly inelastic. Answer D is incorrect because a tax generally causes some DWL unless quantity truly doesn’t change at all – in perfectly inelastic demand case, quantity doesn’t change so DWL = 0, but generally inelastic means “not very responsive”, not perfectly fixed.)
  2. True/False: “Doubling the per-unit tax on a good will double the deadweight loss in that market.”

    • Answer: False. Deadweight loss increases non-linearly with the size of the tax. In fact, for a linear demand and supply, the deadweight loss is proportional to the square of the tax. So if you double the tax, the DWL will quadruple (increase by a factor of four), not double. In general, D W L = 1 2 ( Δ Q ) × tax DWL = \frac{1}{2} (\Delta Q) \times \text{tax} DWL=21(ΔQ)×tax and Δ Q \Delta Q ΔQ grows with the tax, so doubling tax leads to more than double Δ Q \Delta Q ΔQ proportionately ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%3D%20,250%F0%9D%91%8F%F0%9D%91%A1)). This is an important consideration in tax policy – large taxes can create disproportionately large efficiency losses.

Chapter 4: General Equilibrium and Pareto Efficiency (Edgeworth Box)(第四章:一般均衡与帕累托效率(埃奇沃思框图))

Pareto Efficiency in Exchange(交换经济中的帕累托效率)

Consider an economy with two consumers and two goods (an “exchange economy”). An allocation (how much each person has of each good) is called Pareto efficient (Pareto optimal) if there is no other feasible allocation that would make at least one person better off without making anyone worse off. In the context of a two-person exchange, an allocation is Pareto efficient if one consumer’s utility cannot be increased without lowering the other’s utility. Graphically, using an Edgeworth Box, Pareto efficient allocations occur where the two consumers’ indifference curves are tangent to each other ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20A%20feasible%20allocation%20where,each%20other%20is%20pareto%20efficient)) – meaning their marginal rates of substitution are equal. At a tangency, the rate at which one person is willing to trade one good for the other equals the rate at which the other person is willing to trade, so there is no further mutually beneficial trade to be made.

All the Pareto efficient points in the Edgeworth box form the contract curve (Pareto set) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=The%20Contract%20Curve%20%2F%20Pareto,contract%20curve%20shows%20all%20feasible)). The contract curve connects all tangency points between the two consumers’ indifference curves that lie within the feasible region. It typically starts from one corner (all goods to person A) and ends at the opposite corner (all to person B), and every point on it is Pareto optimal. The contract curve is independent of the initial endowment – it depends only on preferences (it shows all possible efficient splits of the goods) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20At%20any%20point%20on,are%20tangent%20to%20each%20other)). However, which efficient point is achieved can depend on initial endowments and trading processes or institutions.

In an exchange market with competitive trade, any equilibrium achieved will be Pareto efficient (this is the First Fundamental Theorem of Welfare Economics in simple terms: under certain conditions, competitive markets lead to Pareto efficient outcomes). Intuitively, if there were a way to make both parties better off, they would trade to achieve it, so a competitive equilibrium should exhaust all such gains from trade.

中文: 在有两个消费者、两个商品的交换经济中,如果一种资源分配无法再在不使任何人变差的情况下让至少一人变得更好,则称其为帕累托有效(Pareto optimal)。换言之,如果存在另一种可行分配能让某人变好且无人变坏,则原分配就不是帕累托有效的。在两人交换的情形下,当无法再提高一个人的效用而不损及另一个人的效用时,分配就是帕累托有效的。借助埃奇沃思盒图(Edgeworth Box),帕累托有效的 allocations 出现在两位消费者的无差异曲线相切之处 ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20A%20feasible%20allocation%20where,each%20other%20is%20pareto%20efficient))——此时两人的边际替代率相等。这表示双方愿意用一种商品交换另一种商品的主观比率相等,因此没有进一步让双方共同受益的交换了。

所有帕累托有效点的集合构成契约曲线(Contract Curve) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=The%20Contract%20Curve%20%2F%20Pareto,contract%20curve%20shows%20all%20feasible))(也称帕累托集合)。契约曲线连接埃奇沃思盒内所有无差异曲线相切的点。它通常从盒子的一个角(所有物品都归A)延伸到对角(所有物品都归B),其上的每一点都是帕累托最优的。契约曲线不依赖于初始禀赋 ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20At%20any%20point%20on,are%20tangent%20to%20each%20other))——它仅由偏好结构决定(表示在各种可能的商品分配下的有效交易结果)。但实际会达致契约曲线上的哪一点,可能取决于初始禀赋和交易过程等因素。

在一个通过竞争性交易达到均衡的交换市场中,任何均衡结果都将是帕累托有效的(这实质上是福利经济学第一定理:在一定条件下,竞争性市场均衡是帕累托有效的)。直观理解,如果存在让双方都变好的改进空间,他们会通过交易来实现它;因此竞争均衡应已穷尽所有此类互利的交易机会。

(File:Contract-curve-on-edgeworth-box.svg - Wikipedia) Edgeworth Box: The box depicts all possible allocations of two goods (horizontal and vertical axes) between two consumers (origin for Consumer A at bottom-left, origin for B at top-right). Indifference curves for A (black) and B (red, drawn from B’s origin) are shown. Pareto efficient allocations occur where an indifference curve of A is tangent to an indifference curve of B ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20A%20feasible%20allocation%20where,each%20other%20is%20pareto%20efficient)). The blue curve through those tangencies is the contract curve ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=The%20Contract%20Curve%20%2F%20Pareto,contract%20curve%20shows%20all%20feasible)). Points not on the contract curve (like the interior point where curves intersect) are Pareto-inefficient: there exist trades (moving northeast towards the contract curve) that make both better off.*

中文: (File:Contract-curve-on-edgeworth-box.svg - Wikipedia) 埃奇沃思盒图: 该盒子描述两种商品(横轴和纵轴)在两位消费者之间的所有可能分配(A的原点在左下,B的原点在右上)。图中绘出了A的无差异曲线(黑色)和B的无差异曲线(红色,从右上角原点绘制)。当A和B的无差异曲线相切时,即为帕累托有效的分配 ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20A%20feasible%20allocation%20where,each%20other%20is%20pareto%20efficient))。通过所有相切点的蓝色曲线就是契约曲线 ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=The%20Contract%20Curve%20%2F%20Pareto,contract%20curve%20shows%20all%20feasible))。不在契约曲线上的点(如图中无差异曲线相交的内部点)是帕累托无效率的:存在某种交换(沿着指向契约曲线方向的东北移动)可以使两者境况同时改善。*

Competitive Equilibrium in Exchange(交换经济中的竞争均衡)

In an exchange economy, a competitive equilibrium is a price for each good such that the total demand equals total supply for each good (market clears), given the consumers’ initial endowments. Each consumer maximizes their utility subject to their budget constraint (determined by prices and their endowment’s value). The result is an allocation (who ends up with what) and a set of prices.

Importantly, any competitive equilibrium allocation is Pareto efficient (as mentioned). Moreover, under certain conditions, any Pareto efficient allocation can be achieved by some competitive equilibrium given an appropriate redistribution of endowments (this is the Second Welfare Theorem – by transferring initial endowments, society can reach any desired efficient outcome via markets).

Example: Suppose Alice and Bob have an initial endowment of goods A (apples) and O (oranges). Total apples = 10, total oranges = 10. Alice’s utility U A ( A , O ) = A × O U_A(A,O) = A \times O UA(A,O)=A×O (perfectly balanced Cobb-Douglas preferences for apples and oranges), and Bob’s utility U B ( A , O ) = A × O U_B(A,O) = A \times O UB(A,O)=A×O (assume identical preferences for simplicity). Let initial endowment be: Alice has (10 apples, 0 oranges), Bob has (0 apples, 10 oranges). Initially, the allocation is extremely unequal (each has only one type of good). If they trade competitively, what will be the equilibrium?

Each will want a mix of apples and oranges due to their A × O A \times O A×O utility (they gain utility only if they have some of each good). Intuitively, we expect them to trade to split the goods roughly equally. Indeed, the competitive equilibrium price ratio will be 1:1 (one apple trades for one orange) by symmetry, and the equilibrium allocation will be each having 5 apples and 5 oranges. Why? At price p apple p_{\text{apple}} papple (in terms of oranges) = 1, Alice, who started with 10 apples, can trade apples for oranges 1-for-1. To maximize A × O A \times O A×O, she will trade away apples until she has equal quantities of apples and oranges. Starting with 10 apples and 0 oranges, she will trade 5 apples for 5 oranges, ending with (5,5). Bob similarly trades 5 oranges for 5 apples, ending with (5,5). This allocation (5 apples & 5 oranges each) is on the contract curve and is Pareto efficient (their MRS are equal, both equal to 1 at that point). Neither can be made better off without hurting the other now.

We can also verify market clearance: total apples 10 are all allocated (5 to Alice, 5 to Bob), same for oranges, and each person’s trade is consistent (Alice sold 5 apples which Bob bought, Bob sold 5 oranges which Alice bought). The equilibrium price of 1 emerges because if the price were different, say apples expensive relative to oranges, one side would not want to trade as much. (In this symmetric case, any price =1 would actually clear the market since their preferences are identical and endowments just mirrored; but if preferences differ, there would be a unique equilibrium price that balances supply and demand for each good.)

Thus, the competitive equilibrium outcome is (5,5) for both, which is Pareto efficient. This demonstrates that through trade the two can reach a mutually beneficial allocation from an initially skewed endowment.

If one party had different preferences (e.g., Alice likes apples more), the equilibrium might split the goods unevenly, but still in a way that equalizes MRS = price ratio. The key conditions for equilibrium: each maximizes utility ( M R S A = p a p p l e / p o r a n g e MRS_A = p_{apple}/p_{orange} MRSA=papple/porange and M R S B = p a p p l e / p o r a n g e MRS_B = p_{apple}/p_{orange} MRSB=papple/porange at optimum), and markets clear (total Apple demand = 10, total Orange demand = 10). Solving those yields the outcome.

Practice Question – Edgeworth Box Example

Example Question 4 (Pareto Efficiency & Trade): Alice and Bob consume apples (A) and oranges (O). Total endowment: 10 apples and 10 oranges. Initially, Alice has ( A = 8 , O = 2 ) (A=8, O=2) (A=8,O=2) and Bob has ( A = 2 , O = 8 ) (A=2, O=8) (A=2,O=8). Alice’s utility is U A = A A × O A U_A = A_A \times O_A UA=AA×OA; Bob’s utility is U B = A B × O B U_B = A_B \times O_B UB=AB×OB (both have Cobb-Douglas preferences valuing goods equally). They can trade apples and oranges freely.
(a) Show that the initial allocation is not Pareto efficient. (Hint: Are their MRS equal? Could a trade make both better off?)
(b) Find the competitive equilibrium price ratio (price of apples in terms of oranges) that equates supply and demand. What is the equilibrium allocation after trade?
© Identify the equilibrium on an Edgeworth box diagram and explain why it is Pareto efficient.

问题4 示例(帕累托效率与交换): Alice和Bob消费苹果(A)和橙子(O)。总禀赋:10个苹果和10个橙子。初始分配:Alice有 ( A = 8 , O = 2 ) (A=8, O=2) (A=8,O=2),Bob有 ( A = 2 , O = 8 ) (A=2, O=8) (A=2,O=8)。Alice的效用 U A = A A × O A U_A = A_A \times O_A UA=AA×OA;Bob的效用 U B = A B × O B U_B = A_B \times O_B UB=AB×OB(两人偏好均为等权重的Cobb-Douglas)。他们可以自由交易苹果和橙子。
(a) 证明初始分配不是帕累托有效的。(提示:他们的MRS是否相等?是否存在让双方都受益的交易?)
(b) 求竞争性均衡的价差(以橙子计价的苹果价格)使供需平衡。交易后的均衡分配是什么?
© 在埃奇沃思盒中标出该均衡,并解释为何它是帕累托有效的。

Solution to Example 4:
(a) At the initial allocation, Alice has a lot of apples but few oranges, while Bob has the opposite. Alice’s marginal rate of substitution (MRS) — the rate at which she’d trade apples for oranges — is given by the ratio of marginal utilities. For U A = A A × O A U_A = A_A \times O_A UA=AA×OA, M U A ( a p p l e ) = O A MU_{A}^{(apple)} = O_A MUA(apple)=OA and M U A ( o r a n g e ) = A A MU_{A}^{(orange)} = A_A MUA(orange)=AA. So Alice’s M R S A = M U ( a p p l e ) M U ( o r a n g e ) = O A A A = 2 8 = 0.25 MRS_{A} = \frac{MU^{(apple)}}{MU^{(orange)}} = \frac{O_A}{A_A} = \frac{2}{8} = 0.25 MRSA=MU(orange)MU(apple)=AAOA=82=0.25. This means initially Alice is willing to give up at most 0.25 oranges for 1 more apple (or equivalently, she’d give up 1 apple for 0.25 orange) – actually she has too many apples, she values oranges more relatively. Bob’s MRS: M U ( a p p l e ) = O B = 8 MU^{(apple)} = O_B = 8 MU(apple)=OB=8, M U ( o r a n g e ) = A B = 2 MU^{(orange)} = A_B = 2 MU(orange)=AB=2, so M R S B = 8 2 = 4 MRS_B = \frac{8}{2} = 4 MRSB=28=4. Bob is willing to give up 4 oranges for 1 apple (he has many oranges, few apples, so he values apples much more). Their MRS are very different (0.25 vs 4). This indicates a misallocation: Alice values oranges relatively more, Bob values apples more. If Bob gives Alice some oranges in exchange for apples, both can gain.

Indeed, consider a trade: Bob gives Alice 3 oranges, and Alice gives Bob 3 apples. Then they end up with Alice (5A,5O) and Bob (5A,5O). Alice’s utility becomes 5 ∗ 5 = 25 5*5=25 55=25, up from 8 ∗ 2 = 16 8*2=16 82=16 (she’s better off). Bob’s utility becomes 5 ∗ 5 = 25 5*5=25 55=25, up from 2 ∗ 8 = 16 2*8=16 28=16 (he’s also better off). So this trade makes both better off – meaning the initial allocation was Pareto-inefficient. In general, whenever MRS ratios differ, you can redistribute goods to make both parties better off until their MRS equalize.

(b) In a competitive equilibrium, the price ratio p A / p O p_A/p_O pA/pO will adjust until Alice’s demand for apples and oranges and Bob’s demand exactly meet the total 10 and 10 available. Given the symmetry and identical Cobb-Douglas preferences, we can anticipate the equilibrium will split each good evenly (5 and 5 each, as seen in the above trade). The price ratio that supports that: At (5,5) for each, each person’s MRS = 1 (since O / A = 1 O/A = 1 O/A=1 for each). In equilibrium, price ratio equals MRS for each consumer. So p A : p O = 1 : 1 p_A : p_O = 1:1 pA:pO=1:1. In other words, one apple trades for one orange in equilibrium. We can double-check by solving utility maximization with budget constraints: Initially, Alice’s endowment worth in terms of oranges = 8 ∗ p A + 2 ∗ p O 8*p_A + 2*p_O 8pA+2pO. Let price of orange p O = 1 p_O=1 pO=1 as numeraire, then p A p_A pA is the price of an apple in oranges. Alice maximizes A A ∗ O A A_A * O_A AAOA subject to p A A A + 1 ∗ O A = 8 p A + 2 p_A A_A + 1*O_A = 8 p_A + 2 pAAA+1OA=8pA+2 (her wealth). Using symmetry and Cobb-Douglas properties, the demand for each good will be such that she spends equal fractions of her income on apples and oranges (because of equal exponents in utility). So she will spend half her income on apples, half on oranges. That yields: p A A A ∗ = 1 ∗ O A ∗ = 1 2 ( 8 p A + 2 ) p_A A_A^* = 1 * O_A^* = \frac{1}{2}(8p_A + 2) pAAA=1OA=21(8pA+2). Similarly for Bob. Solving these along with A A ∗ + A B ∗ = 10 A_A^* + A_B^* = 10 AA+AB=10 and O A ∗ + O B ∗ = 10 O_A^* + O_B^* = 10 OA+OB=10 indeed gives A A ∗ = O A ∗ = 5 A_A^* = O_A^* = 5 AA=OA=5, A B ∗ = O B ∗ = 5 A_B^* = O_B^* = 5 AB=OB=5, and this happens when p A = 1 p_A = 1 pA=1. So the equilibrium price ratio p A : p O = 1 : 1 p_A:p_O = 1:1 pA:pO=1:1, and the equilibrium allocation is each having 5 apples and 5 oranges.

© In the Edgeworth box (which is 10x10), the initial endowment point is at Alice having 8A,2O (so that’s a point near Alice’s top-right corner of her origin box). Bob’s indifference curve through that point is very steep (slope 4) and Alice’s is very flat (slope 0.25), and they intersect – indicating inefficiency. The contract curve in this symmetric case is along the line where A A = O A A_A = O_A AA=OA (each has equal number of apples and oranges, because only then MRS=1 for both). The equilibrium we found (5,5 for each) lies on this contract curve (right at the center of the box). We mark that point. At this point, Alice’s indifference curve is tangent to Bob’s indifference curve – they have the same slope of -1 ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20A%20feasible%20allocation%20where,each%20other%20is%20pareto%20efficient)). This tangency means no further Pareto-improving trades exist. The competitive equilibrium price ratio of 1 corresponds to that common slope. Thus (5,5;5,5) is Pareto efficient. It achieves a significant improvement for both over the initial allocation. This example shows how a competitive market leads them to the efficient outcome on the contract curve (in fact, the exact midpoint here due to symmetry).

Predicted Exam Questions – Chapter 4:

  1. Conceptual: Define Pareto efficiency in the context of an exchange economy. How can you determine if a given allocation of two goods between two people is Pareto efficient?

    • Answer: An allocation is Pareto efficient if there is no other feasible allocation that would make one person better off without making someone else worse off. In a two-person, two-good exchange, this means you cannot reallocate goods between the two people in a way that increases one person’s utility without decreasing the other’s utility. One practical test is to compare the consumers’ marginal rates of substitution (MRS) at that allocation. If M R S A ≠ M R S B MRS_A \neq MRS_B MRSA=MRSB, then one person values the goods differently than the other, and a mutually beneficial trade is possible (so the allocation is not Pareto efficient). If M R S A = M R S B MRS_A = MRS_B MRSA=MRSB, and both individuals’ indifference curves are tangent, the allocation lies on the contract curve and is Pareto efficient ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20A%20feasible%20allocation%20where,each%20other%20is%20pareto%20efficient)). In an Edgeworth box, Pareto efficient points are exactly those where the two indifference curves are tangent – no “lens”-shaped overlap of indifference curves exists, meaning no win-win trade remains. If an allocation is not on the contract curve (their indifference curves intersect), it is Pareto-inefficient ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20A%20feasible%20allocation%20where,each%20other%20is%20pareto%20efficient)) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=The%20Contract%20Curve%20%2F%20Pareto,contract%20curve%20shows%20all%20feasible)).
  2. Analytical/Graphical: Explain why a competitive equilibrium in an exchange economy must be Pareto efficient. (Hint: use the idea of MRS and trading – or state the First Welfare Theorem.)

    • Answer: In a competitive equilibrium, each consumer maximizes their own utility given prices, and the market clears. This implies each consumer’s MRS between any two goods equals the price ratio. So we have M R S A = p r i c e   r a t i o = M R S B MRS_A = price\ ratio = MRS_B MRSA=price ratio=MRSB. Thus, the allocation achieved has M R S A = M R S B MRS_A = MRS_B MRSA=MRSB. As argued, this condition (along with consumption feasibility) is exactly the condition for Pareto efficiency in exchange. If the allocation were not efficient, there would exist some trade of goods between Alice and Bob that could make one better off without hurting the other – but if that were the case, such a trade would have been made in the competitive market because any mutually beneficial trade would be taken (there are gains from trade that agents would exploit). Therefore, no unexploited gains from trade remain, and the outcome is Pareto optimal. This is a restatement of the First Fundamental Theorem of Welfare Economics: under ideal conditions (no market power, no externalities, etc.), the free-market equilibrium allocation is Pareto efficient.

Revision Notes (Bilingual) – Key Concepts and Formulas

Terminology & Concepts:

  • Reservation Price(保留价格): The maximum price a consumer is willing to pay for a good (or minimum price a seller is willing to accept). It reflects the good’s value to that person. If market price is below one’s reservation price, they gain surplus by buying; if above, they won’t buy. 对消费者而言,保留价格是其愿意支付的最高金额;对卖者而言是其愿意接受的最低价格。它反映了该商品对个人的价值。
  • Consumer Surplus (CS, 消费者剩余): The difference between what consumers are willing to pay in total and what they actually pay. Graphically, area under demand curve above the price (3.5 Demand, Supply, and Efficiency - Principles of Economics 3e | OpenStax). Formula: C S = ∫ 0 Q ∗ P d ( q )   d q − P ∗ Q ∗ CS = \int_0^{Q^*} P_d(q)\,dq - P^*Q^* CS=0QPd(q)dqPQ. It measures consumers’ net gain from the market price. 消费者剩余=消费者愿付总额与实际支付总额的差额。图形上是需求曲线下方、价格线上方的面积。衡量消费者从市场交易中得到的净福利。
  • Producer Surplus (PS, 生产者剩余): The difference between what producers receive and their cost of producing (variable cost). Area above supply curve below price ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=curve%20and%20the%20price%20line,measure%20of%20aggregate%20consumer%20welfare)). Formula: P S = P ∗ Q ∗ − ∫ 0 Q ∗ M C ( q )   d q PS = P^*Q^* - \int_0^{Q^*} MC(q)\,dq PS=PQ0QMC(q)dq. It’s essentially profit ignoring fixed costs. 生产者剩余=生产者实际收入减去生产可变成本的差额。图上为供给曲线以上、价格线以下面积。基本等于利润(不计固定成本)。
  • Compensating Variation (CV, 补偿变动): For a price increase, the amount of money you’d have to give the consumer after the price change to restore them to their initial utility. Computed by V ( p n e w , m + C V ) = V ( p o l d , m ) V(p_{new}, m + CV) = V(p_{old}, m) V(pnew,m+CV)=V(pold,m). Price decrease: money that needs to be taken away after the price drop to keep utility same as before. A price rise yields CV > 0 (compensation needed). 对于涨价,补偿变动是涨价发生后需要给予消费者的金额使其效用恢复初始水平。公式: V ( p 新 , m + C V ) = V ( p 旧 , m ) V(p_{新}, m+CV) = V(p_{旧}, m) V(p,m+CV)=V(p,m)。降价则是降价后需要从其拿走的金额(因为降价本来使他更好,需要拿走一些使效用降到原水平)。涨价时CV为正。
  • Equivalent Variation (EV, 等价变动): For a price increase, the amount of money that would need to be taken away before the price change (at initial prices) to reduce the consumer’s utility to the level after the price increase. Computed by V ( p o l d , m − E V ) = V ( p n e w , m ) V(p_{old}, m - EV) = V(p_{new}, m) V(pold,mEV)=V(pnew,m). It’s the consumer’s WTP to avoid the price change. Price decrease: EV is money you’d pay (sacrifice) beforehand to get the discount. 涨价的等价变动=在涨价前需要拿走多少收入才能使效用降到涨价后的水平。 V ( p 旧 , m − E V ) = V ( p 新 , m ) V(p_{旧}, m-EV) = V(p_{新}, m) V(p,mEV)=V(p,m)。表示消费者为避免涨价愿意支付的金额。降价情况下EV是愿意支付以获得该降价的金额。
  • Relationships: Typically for a price increase (normal good): E V ≥ Δ C S ≥ C V EV \geq \Delta CS \geq CV EVΔCSCV. If preferences are quasi-linear, E V = C V = Δ C S EV = CV = \Delta CS EV=CV=ΔCS. 关系:通常涨价对正常品有 E V ≥ Δ C S ≥ C V EV \geq \Delta CS \geq CV EVΔCSCV;拟线性偏好下三者相等。
  • Social Welfare (社会福利): In a single market context, usually W = C S + P S W = CS + PS W=CS+PS (sum of surpluses) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=The%20aggregate%20welfare%20of%20multiple,welfare%20measures%20across%20all%20producers%2Fconsumers)). This is maximized at the efficient equilibrium (assuming no externalities). More generally, social welfare could include other components or use a social utility function, but in basic analysis CS+PS is total surplus. 社会福利:单个市场通常指消费者剩余+生产者剩余之和 ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=The%20aggregate%20welfare%20of%20multiple,welfare%20measures%20across%20all%20producers%2Fconsumers))。在有效率的均衡时该总剩余最大(无外部性假设下)。
  • Deadweight Loss (DWL, 无谓损失): The loss in total surplus due to a distortion (e.g. tax, price ceiling) that prevents some mutually beneficial trades. Graphically a triangle between demand and supply from Q new Q_{\text{new}} Qnew to Q efficient Q_{\text{efficient}} Qefficient. Approx formula for small tax t t t: D W L ≈ 1 2 t × Δ Q DWL \approx \frac{1}{2} t \times \Delta Q DWL21t×ΔQ. With linear curves, $DWL = \frac{1}{2} (\text{tax})^2 \times \text{(Q reduction per $1 tax)} . 无谓损失:由于扭曲(如税收、管制)使部分本可让双方受益的交易未发生,导致的总剩余损失。图形上是从扭曲后数量到效率数量之间需求和供给曲线围成的三角形。小税 . 无谓损失:由于扭曲(如税收、管制)使部分本可让双方受益的交易未发生,导致的总剩余损失。图形上是从扭曲后数量到效率数量之间需求和供给曲线围成的三角形。小税 .无谓损失:由于扭曲(如税收、管制)使部分本可让双方受益的交易未发生,导致的总剩余损失。图形上是从扭曲后数量到效率数量之间需求和供给曲线围成的三角形。小税t 的无谓损失约 的无谓损失约 的无谓损失约\frac{1}{2}t \times \Delta Q$。线性情况下,DWL与税额平方成正比。
  • Tax Incidence(税负归宿): The division of a tax’s burden between buyers and sellers. Key rule: the more inelastic side of the market bears more of the burden. If demand is inelastic relative to supply, consumers pay most of the tax (price paid rises a lot) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=,ii%29%20constant)). If supply is inelastic, producers bear more (price received falls a lot). Incidence is independent of who is legally taxed. 税负归宿:税收负担在买卖双方之间的分摊。关键规律:哪一方弹性较小,哪一方承担税负较多。需求相对无弹,则消费者承担大头 ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=,ii%29%20constant));供给较无弹,则生产者承担更多。税负分担与法律上课税给谁无关。
  • Pareto Efficiency(帕累托效率): An allocation is Pareto efficient if no one can be made better off without making someone else worse off. In consumption exchange, this occurs when individuals’ MRS are equal (no further mutually beneficial trade) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20A%20feasible%20allocation%20where,each%20other%20is%20pareto%20efficient)). On the contract curve in Edgeworth box. 帕累托效率:无法在不使他人变差的情况下让任何人变得更好的分配。 ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=%E2%80%A2%20A%20feasible%20allocation%20where,each%20other%20is%20pareto%20efficient))在交换经济中,各人边际替代率相等时达到(没有互利交易空间)。契约曲线上的点都是帕累托有效的。
  • Edgeworth Box (埃奇沃思盒): A diagram for two-good, two-person exchange. Shows all feasible allocations given fixed total resources. Indifference curves of both people are drawn in the box. The contract curve traces all tangencies (Pareto optima) ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=The%20Contract%20Curve%20%2F%20Pareto,contract%20curve%20shows%20all%20feasible)). The initial endowment is a point in the box; trade moves the allocation to an equilibrium point (often on contract curve). Edgeworth盒:表示两人两物品交换的图,每个点表示一种资源分配,总资源固定 ([HE2001 micro下半期(1).pdf](file://file-RXdTg41x39rHfSoPYjGMKd#:~:text=The%20Contract%20Curve%20%2F%20Pareto,contract%20curve%20shows%20all%20feasible))。盒中绘出双方的无差异曲线,切点构成契约曲线。初始禀赋是盒中一点,交易使分配移动到均衡点(通常在契约曲线上)。

Key Formulas:

  • Demand/Surplus: C S = ∫ 0 Q ∗ D − 1 ( q )   d q − P ∗ Q ∗ CS = \int_{0}^{Q^*} D^{-1}(q)\,dq - P^* Q^* CS=0QD1(q)dqPQ. P S = P ∗ Q ∗ − ∫ 0 Q ∗ S − 1 ( q )   d q PS = P^* Q^* - \int_{0}^{Q^*} S^{-1}(q)\,dq PS=PQ0QS1(q)dq. (Areas of triangles for linear curves.)
  • Welfare changes: Δ C S ≈ − Q Δ P − 1 2 ( Δ Q ) Δ P \Delta CS \approx -Q \Delta P - \frac{1}{2} (\Delta Q)\Delta P ΔCSQΔP21(ΔQ)ΔP for price increase (area trapezoid). EV/CV via indirect utility: E V = m − m ′ EV = m - m' EV=mm such that V ( p 0 , m − E V ) = V ( p 1 , m ) V(p_{0}, m - EV) = V(p_{1}, m) V(p0,mEV)=V(p1,m); C V = m ′ − m CV = m' - m CV=mm such that V ( p 1 , m + C V ) = V ( p 0 , m ) V(p_{1}, m + CV) = V(p_{0}, m) V(p1,m+CV)=V(p0,m).
  • Tax: After a per-unit tax t t t, if demand Q ( p ) Q(p) Q(p) and supply Q s ( p ) Q^s(p) Qs(p), equilibrium satisfies Q ( p c ) = Q s ( p p ) Q(p_c) = Q^s(p_p) Q(pc)=Qs(pp) with p c − p p = t p_c - p_p = t pcpp=t. DWL ≈ 1 2 t ( Q n o   t a x − Q w i t h   t a x ) \approx \frac{1}{2} t (Q_{no\ tax} - Q_{with\ tax}) 21t(Qno taxQwith tax). Incidence: Consumer’s burden = ( p c n e w − p ∗ ) / t (p_c^{new}-p^*)/t (pcnewp)/t, Producer’s burden = ( p ∗ − p p n e w ) / t (p^* - p_p^{new})/t (pppnew)/t. (Ratio relates to elasticity: burden ∝ \propto opposite side’s elasticity).
  • General Equilibrium: In exchange, equilibrium when each’s MRS equals price ratio, and goods’ markets clear (sum of demands = total endowment). Ensure M R S A = P x P y = M R S B MRS^A = \frac{P_x}{P_y} = MRS^B MRSA=PyPx=MRSB. Competitive equilibrium implies Pareto efficiency (1st Welfare Theorem); any Pareto efficient outcome can be achieved by some initial endowment and competitive equilibrium (2nd Welfare Theorem).

Likely Exam Focus Points 提示:

  • Be comfortable computing consumer and producer surplus from linear demand/supply diagrams (areas of triangles) and understanding how interventions (like taxes, price ceilings) change them. 要能计算消费者剩余和生产者剩余,并理解政策干预如何改变它们(如税收、价格上限导致面积变化)。
  • Know how to derive CV and EV for a price change given a utility function (possibly via indirect utility or compensating income). Understand the conceptual difference: EV = WTP to avoid change, CV = compensation after change. 会推导价格变化的补偿变动和等价变动(给定效用函数,间接效用方法),理解概念区别:EV是避免变化的愿付额,CV是变化后所需补偿。
  • Understand tax incidence: who bears more burden depends on elasticity. Possibly be ready for a question asking “if X is inelastic and Y elastic, who pays more of the tax?” or a True/False about tax incidence independence from legal assignment. 理解税负归宿:负担取决于弹性大小。知道“若需求无弹性大于供给”等情形谁承担更多,以及税负与法律征税对象无关这样的判断。
  • Calculate deadweight loss from a tax or price control. Possibly a numeric question: given supply/demand equations, impose a tax, find new Q, CS, PS, DWL. Also know qualitatively that raising a tax increases DWL more than proportionally (could be a conceptual question). 会计算税收或管制导致的无谓损失(可能给供需方程求征税后的Q, CS, PS, DWL),并了解提高税率会使DWL成倍增加等定性结论。
  • Edgeworth box and Pareto efficiency: be prepared to determine if an allocation is Pareto efficient by checking MRS, or to find a Pareto improving trade. Possibly draw an Edgeworth box, mark contract curve, etc. Understand why competitive equilibrium = Pareto optimal (could be an essay/short answer). 熟悉Edgeworth盒判定帕累托效率:通过比较MRS判断,找出帕累托改进的交换。可能需绘制Edgeworth盒并标出契约曲线等。理解为何竞争均衡是帕累托有效(可能以简答考察)。

Good luck with your revision! 加油复习,预祝考试顺利!

async openDialog () { console.log(this.objFormData, '编辑信息') // 获取所有案由的违规条款选项和依据数据 const optionsMap = new Map() const basisMap = new Map() await Promise.all(this.objFormData.accordList.map(async accord => { // console.log(accord, '打印') const { data: optionData } = await getLawRules(accord.violationAccord) optionsMap.set(accord.violationAccord, lawTreeFilter(optionData)) basisMap.set(accord.violationAccord, accord.accordBasis) })) // 处理条例数据 const gistList = [] for (const accord of this.objFormData.accordList) { accord.accordDetail.forEach(item => { let labels = item.violationClause.split("-").map(str => str.trim()).filter(Boolean) // console.log(labels, 'labels') const illegalOptions = accord.illegalOptions || optionsMap.get(accord.violationAccord) const ruleIdList = [] let options = illegalOptions for (const label of labels) { const option = options.find(opt => opt.label === label) if (option) { ruleIdList.push(option.value) options = option.children } } // console.log(ruleIdList,'ruleIdList') // console.log(options,'options') // 添加选择的数据到数组中 // const selectedData = { // violationAccord: accord.violationAccord, // violationAccordText: accord.violationAccordText, // illegalValue: ruleIdList // } // gistList.push(selectedData) // 添加数据到回显数据中 const elRuleList = [{ illegalValue: ruleIdList }]; console.log(elRuleList,'hhhhhh') const echoData = { gistValue: accord.violationAccordText, ruleList: elRuleList, illegalOptions: illegalOptions, basis: basisMap.get(accord.violationAccord) } this.gistList.push(echoData) }) } },这个方法中,这个 accord.violationAccordText值相等的把他们对应的elRuleList这个值放到一个ruleList里面
05-27
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值