矩阵公式tr(AA')=tr(A'A)/tr(AA^T)=tr(A^TA)的推导

该博客证明了矩阵公式tr(AA^T)=tr(ATA),指出AAT和ATA具有相同非零特征值,利用特征值之和等于矩阵迹的性质得出结论。
摘要由CSDN通过智能技术生成

求证: t r ( A A T ) = t r ( A T A ) tr(AA^{T})=tr(A^{T}A) tr(AAT)=tr(ATA)

证明:根据这篇博客 A A T 和 A T A AA^{T}和A^{T}A AATATA具有相同的非零特征值。因此我们有:
\quad 矩阵 A A T AA^{T} AAT的特征值之和= A T A A^{T}A ATA的特征值之和.

\quad 同时,根据高等代数,一个方形矩阵的迹等于它的所有特征值之和,因此由上面的结论,容易得到: t r ( A A T ) = t r ( A T A ) tr(AA^{T})=tr(A^{T}A) tr(AAT)=tr(ATA).证毕。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值