矩阵化简与不变子空间直和分解的关系

\qquad 本文限于讨论规模 n × n n\times n n×n的方阵 A A A.

\qquad 我们知道方阵也可以看做是一个映射: R n → R n R^n \rightarrow R^n RnRn.而如果一个 R n R^n Rn空间的子空间 T T T满足: ∀ x ∈ T , A x ∈ T \forall x\in T,Ax\in T xT,AxT,我们就称T是A的一个不变子空间. 不变子空间是矩阵化简的一个利器.

\qquad R n R^n Rn可以分解 s s s个不变子空间的直和:
R n = W 1 ⊕ W 2 ⊕ ⋯ ⊕ W s R^n=W_1\oplus W_2\oplus \cdots \oplus W_s Rn=W1W2Ws \qquad W i , i = 1 , 2 , ⋯   , s W_i,i=1,2,\cdots,s Wi,i=1,2,,s是不变子空间,不妨设 W i W_i Wi的一组基是 x i 1 , x i 2 , ⋯   , x i r i x_{i1},x_{i2},\cdots,x_{ir_i} xi1,xi2,,xiri,那么就有:
A [ x i

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 给定一个线性变换T: V → V,V是一个向量空间。定义T的不变空间为T的所有使得Tv = λv的向量v所张成的空间,其中λ是V中某个标量。 T的不变空间分解意味着我们可以将V分解为T的不变空间和。 具体的步骤如下: 1. 找到T的所有不变空间。这些空间是由满足Tv = λv的向量v所张成的。 2. 确定每个不变空间的维数。设T的不变空间为W1, W2, ..., Wn,维数分别为k1, k2, ..., kn。 3. 如果 W1 + W2 + ... + Wn = V,且 W1 ∩ W2 ∩ ... ∩ Wn = {0},那么V是W1, W2, ..., Wn的分解。 T的不变空间分解相应矩阵分解如下: 1. 对于每个不变空间Wi,选择Wi的一组基b1i, b2i, ..., bki。 2. 将每个不变空间的基扩展为V的一组基,记为B = {b1, b2, ..., bm}。其中b1, b2, ..., bn是Wi的基,而b(n+1), b(n+2), ..., bm是V中不属于Wi的基。 3. 构建一个矩阵P,其列向量是基向量b1, b2, ..., bm。 4. 构建一个对角矩阵D,对角线上的元素为每个不变空间Wi的维数ki。 5. 构建一个矩阵A,使得A = P^-1TDP。 6. 这样,A的对角元素对应于D的对角元素,矩阵A的不变空间对应于T的不变空间。 需要注意的是,T的不变空间分解相应矩阵分解有时候并不一定存在或唯一。这取决于线性变换T的性质和向量空间V的结构。 ### 回答2: 给定一个线性变换T:V→V,其中V是一个n维线性空间。T的不变空间是指在T下保持不变的V的空间。 我们知道,对于每个不变空间W,W中的向量在T下的像也在W中。因此,我们可以将V分解成T的所有不变空间和。 具体地说,假设T有k个不变空间W1, W2, ..., Wk。那么,V可以通过以下分解表示: V = W1 ⊕ W2 ⊕ ... ⊕ Wk 其中,⊕表示和运算,表示所有空间的和。 此外,相应矩阵分解是通过选择每个不变空间的基向量,并将它们排列为一个矩阵,使得这个矩阵的行向量是各个不变空间的基向量。在选择基向量时,可以选择每个不变空间的一组基,这样可以更好地描述这些空间。 假设W1的基向量是{v11, v12, ..., v1r1},W2的基向量是{v21, v22, ..., v2r2},以此类推,Wk的基向量是{vk1, vk2, ..., vkrk}。那么,我们可以将这些基向量排列为一个矩阵P,形成一个n×(r1+r2+...+rk)的矩阵。 在这个表示中,线性变换T对应的矩阵表示可以表示为一个分块矩阵: [T] = [A11 A12 ... A1k] [A21 A22 ... A2k] ... [Ak1 Ak2 ... Akk] 其中,每个Ai j是一个rj×rj的方阵,表示T在Wi的作用下对Wi的限制。这些方阵中的每一个都是一个不变空间的基向量之间的线性关系。 总之,T的不变空间分解将V分解为每个不变空间的和,相应矩阵分解是一个矩阵P和一个分块矩阵[Ai j]。这些分解可以帮助我们更好地理解和描述线性变换T的性质和行为。 ### 回答3: 在线性代数中,一个矩阵的“不变空间”是指在矩阵变换下保持不变的向量空间。对于一个矩阵A,它的不变空间由满足 A·v = v 的向量 v 组成。其中,v 称为 A 的特征向量。 现在考虑一个矩阵 A 的不变空间分解。对于一个特征值 λ,其对应的特征向量 v 所生成的空间被称为特征空间,并表示为 E(λ)。如果一个矩阵有 n 个不同的特征值 λ1, λ2, ..., λn,并且它们对应的特征空间分别为 E(λ1), E(λ2), ..., E(λn),那么矩阵 A 的不变空间分解就可以表示为: R^n = E(λ1) ⊕ E(λ2) ⊕ ... ⊕ E(λn) 其中,符号 ⊕ 表示和运算。这意味着任何一个向量 v 可以唯一地表示为几个特征空间和。这种分解能够将整个 n 维空间分解为多个相互正交的空间。 同时,矩阵 A 的相应矩阵分解可以通过特征向量和特征值得到。假设矩阵 A 有 n 个线性无关的特征向量 v1, v2, ..., vn,并且它们对应的特征值分别为 λ1, λ2, ..., λn。我们可以将这些特征向量按列排列形成一个矩阵 P,而相应的特征值则按对角线排列形成一个对角矩阵 D。则有: A = P·D·P^(-1) 这个矩阵分解被称为特征值分解(或谱分解)。它表示将矩阵 A 用其特征向量和特征值对角矩阵来表示。其中,矩阵 P 通常是可逆的,所以我们可以通过 P 的逆矩阵 P^(-1) 来实现变换的逆过程。最后,特征值分解帮助我们了解矩阵 A 在不变空间下的性质。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值