矩阵化简与不变子空间直和分解的关系

本文探讨n×n方阵A的不变子空间及其在矩阵化简中的应用。通过不变子空间的直和分解,可以将Rn空间分解为多个不变子空间的线性组合,每个子空间由特定的基表示。矩阵A在此基下可表示为块对角矩阵,实现了A的相似变换和化简。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

\qquad 本文限于讨论规模 n × n n\times n n×n的方阵 A A A.

\qquad 我们知道方阵也可以看做是一个映射: R n → R n R^n \rightarrow R^n RnRn.而如果一个 R n R^n Rn空间的子空间 T T T满足: ∀ x ∈ T , A x ∈ T \forall x\in T,Ax\in T xT,AxT,我们就称T是A的一个不变子空间. 不变子空间是矩阵化简的一个利器.

\qquad R n R^n Rn可以分解 s s s个不变子空间的直和:
R n = W 1 ⊕ W 2 ⊕ ⋯ ⊕ W s R^n=W_1\oplus W_2\oplus \cdots \oplus W_s Rn=W1W2Ws \qquad W i , i = 1 , 2 , ⋯   , s W_i,i=1,2,\cdots,s Wi,i=1,2,,s是不变子空间,不妨设 W i W_i Wi的一组基是 x i 1 , x i 2 , ⋯   , x i r i x_{i1},x_{i2},\cdots,x_{ir_i} xi1,xi2,,xiri,那么就有:
A [ x i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值