【高中必修二】平面向量

向量定义

方向,有大小的量称为向量,没方向只有的大小的量称为数量
线段 A B AB AB,我们对其两端规定顺序,则 A B AB AB 就成了有向线段

我们就可以用 A B AB AB 来表示一个向量(但有向线段并不是向量),如果 A A A 为起点, B B B 为终点,则这个向量写作 A B → \overrightarrow{AB} AB

向量在平面中是可以平移的,起点终点只是初始位置的起点终点。

向量的模:向量 A B → \overrightarrow{AB} AB 的模写作 ∣ A B → ∣ |\overrightarrow{AB}| AB ,代表 A B → \overrightarrow{AB} AB 的长度。

零向量:模为 0 0 0 的向量则称为 0 0 0 向量,记做 0 ⃗ \vec0 0 0 ⃗ \vec0 0 不是没有方向,是可以任意方向。

单位向量:长度为一个单位的向量被称为单位向量。

相等向量:长度和方向都相同的向量才能叫相等向量,记做 A B → = C D → \overrightarrow{AB}=\overrightarrow{CD} AB =CD

相反向量:长度相等,方向相反的向量称为相反向量,记做 A B → = − B A → \overrightarrow{AB}=-\overrightarrow{BA} AB =BA

共线向量:方向相同或相反的向量称为共线向量,记做 A B → ∥ B C → \overrightarrow{AB}\parallel\overrightarrow{BC} AB BC 。共线向量又称平行向量。(零向量与任意向量平行)

向量运算

向量相加

平行四边形法则

首先,让两个向量尾尾相接,然后以 A B AB AB A C AC AC 为边做一个平行四边形,则 A D → \overrightarrow{AD} AD 为答案。
A B → + A C → = A D → \overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AD} AB +AC =AD
在这里插入图片描述

三角形法则

若两个向量 A B → , B C → \overrightarrow{AB},\overrightarrow{BC} AB ,BC 首尾相接,则连接 A C AC AC A C → \overrightarrow{AC} AC 就是答案(注意向量方向)。

在这里插入图片描述

向量和数相乘

一个向量 A B → \overrightarrow{AB} AB ,乘以 k k k,相当于将 A B → \overrightarrow{AB} AB 长度扩大 k k k 倍。
若乘以负数,则将这个向量取反, A B → \overrightarrow{AB} AB 变成 B A → \overrightarrow{BA} BA
在这里插入图片描述

向量相乘(内积)

向量的夹角:将两个向量的起点放在一起,则此时两条向量构成的角为两个向量的夹角。

向量的投影:将两个向量起点重合(假设 a ⃗ = O A → , b ⃗ = O B → \vec a = \overrightarrow{OA}, \vec b = \overrightarrow{OB} a =OA ,b =OB ), b ⃗ \vec b b 的终点向 a ⃗ \vec a a 做垂线,交 a ⃗ \vec a a 于点 C C C,则 ∣ O C → ∣ |\overrightarrow{OC}| OC b ⃗ \vec b b a ⃗ \vec a a 方向的投影。( ∣ O C → ∣ = ∣ b ⃗ ∣ cos ⁡ θ , θ = ∠ A O B |\overrightarrow{OC}|=|\vec b|\cos\theta,\theta=\angle AOB OC =b cosθ,θ=AOB

向量的内积:也称点乘,两个向量 a ⃗ , b ⃗ \vec a,\vec b a ,b 的内积为 ∣ a ⃗ ∣ ∣ b ⃗ ∣ cos ⁡ θ ( θ = ∠ A O B ) |\vec a||\vec b|\cos\theta(\theta=\angle AOB) a ∣∣b cosθ(θ=AOB),写作 a ⃗ ⋅ b ⃗ \vec a \cdot \vec b a b 。(内积是一个数量)

向量运算定律

交换律

a ⃗ + b ⃗ = b ⃗ + a ⃗ \vec a + \vec b=\vec b+\vec a a +b =b +a
a ⃗ ⋅ b ⃗ = b ⃗ ⋅ a ⃗ \vec a \cdot\vec b=\vec b\cdot\vec a a b =b a

结合律

a ⃗ + ( b ⃗ + c ⃗ ) = ( a ⃗ + b ⃗ ) + c ⃗ \vec a + (\vec b+\vec c)=(\vec a+\vec b)+\vec c a +(b +c )=(a +b )+c
( m n ) a ⃗ = m ( n a ⃗ ) = n ( m a ⃗ ) (mn)\vec a=m(n\vec a)=n(m\vec a) (mn)a =m(na )=n(ma )
( λ a ⃗ ) b ⃗ = ( λ b ⃗ ) a ⃗ = λ ( b ⃗ ⋅ a ⃗ ) (\lambda\vec a)\vec b=(\lambda\vec b)\vec a=\lambda(\vec b\cdot\vec a) (λa )b =(λb )a =λ(b a )

分配律

k ( a ⃗ + b ⃗ ) = k a ⃗ + k b ⃗ k(\vec a + \vec b)=k\vec a+k\vec b k(a +b )=ka +kb
( m + n ) a ⃗ = m a ⃗ + n a ⃗ (m+n)\vec a=m\vec a+n\vec a (m+n)a =ma +na
( a ⃗ + b ⃗ ) c ⃗ = a ⃗ ⋅ c ⃗ + b ⃗ ⋅ c ⃗ (\vec a + \vec b)\vec c = \vec a\cdot\vec c +\vec b\cdot\vec c (a +b )c =a c +b c

其他

a ⃗ + 0 ⃗ = a ⃗ \vec a + \vec 0=\vec a a +0 =a
a ⃗ − b ⃗ = a ⃗ + ( − b ⃗ ) \vec a - \vec b=\vec a+(-\vec b) a b =a +(b )

向量运算推论

cos ⁡ θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ \cos\theta=\dfrac{\vec a \cdot\vec b}{|\vec a||\vec b|} cosθ=a ∣∣b a b

a ⃗ ⊥ b ⃗ ⇔ a ⃗ ⋅ b ⃗ = 0 \vec a ⊥ \vec b\lrArr\vec a\cdot\vec b=0 a b a b =0

∣ a ⃗ ∣ 2 = a ⃗ 2 |\vec a|^2=\vec a^2 a 2=a 2

向量坐标化

基底

i ⃗ , j ⃗ \vec i,\vec j i ,j 为同一平面内两个不平行的向量,那么该平面内任意向量 a ⃗ \vec a a ,都存在唯一的 a x , a y a_x,a_y ax,ay 使:
a ⃗ = a x i ⃗ + a y j ⃗ \vec a = a_x\vec i + a_y \vec j a =axi +ayj

这时,向量 i ⃗ , j ⃗ \vec i,\vec j i ,j 表示该平面内向量的一组基底,记做: { i ⃗ , j ⃗ } \{\vec i,\vec j\} {i ,j } a x i ⃗ + a y j ⃗ a_x\vec i + a_y \vec j axi +ayj 叫做向量 a ⃗ \vec a a 关于基底 { i ⃗ , j ⃗ } \{\vec i, \vec j\} {i ,j } 的分解式。

向量坐标化定义

在平面直角坐标系中,分别取 x x x 轴、 y y y 轴正方向两个单位向量 { i ⃗ , j ⃗ } \{\vec i,\vec j\} {i ,j } 作为基底,则任意向量 a ⃗ \vec a a 都可以唯一的表示成 ( x , y ) (x, y) (x,y) 的形式,使 a ⃗ = x i ⃗ + y j ⃗ \vec a = x\vec i + y \vec j a =xi +yj 。这时,我们称 ( x , y ) (x, y) (x,y) 为向量 a ⃗ \vec a a 的坐标,记做 a ⃗ = ( x , y ) \vec a = (x, y) a =(x,y),这就是向量的坐标表示

平面直角坐标系中,两个点 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) A(x_1,y_1),B(x_2,y_2) A(x1,y1),B(x2,y2) 表示的向量 A B → \overrightarrow{AB} AB 用向量的坐标表示法表示成 ( x 2 − x 1 , y 2 − y 1 ) (x_2-x_1,y_2-y_1) (x2x1,y2y1)

坐标化向量的运算

设向量 a ⃗ = ( x 1 , y 1 ) , b ⃗ = ( x 2 , y 2 ) \vec a = (x_1,y_1),\vec b =(x_2,y_2) a =(x1,y1),b =(x2,y2)
a ⃗ ± b ⃗ = ( x 1 ± x 2 , y 1 ± y 2 ) \vec a\pm\vec b=(x_1\pm x_2,y_1\pm y_2) a ±b =(x1±x2,y1±y2)
λ a ⃗ = ( λ x 1 , λ y 1 ) \lambda\vec a = (\lambda x_1,\lambda y_1) λa =(λx1,λy1)
∣ a ⃗ ∣ = x 1 2 + y 1 2 |\vec a|=\sqrt{{x_1}^2 +{y_1}^2} a =x12+y12
a ⃗ ⋅ b ⃗ = x 1 x 2 + y 1 y 2 \vec a\cdot\vec b = x_1x_2+y_1y_2 a b =x1x2+y1y2

向量的定理

向量共线定理

若存在实数 λ \lambda λ,使得 a ⃗ = λ b ⃗ \vec a =\lambda\vec b a =λb ,则 a ⃗ ∥ b ⃗ \vec a \parallel\vec b a b

平面上三点 A , B , C A,B,C A,B,C,若存在另一点 P P P,使得存在实数 λ , μ \lambda,\mu λ,μ,满足 λ + μ = 1 \lambda +\mu = 1 λ+μ=1 P A → = λ P B → + μ P C → \overrightarrow{PA}=\lambda\overrightarrow{PB}+\mu\overrightarrow{PC} PA =λPB +μPC ,则 A , B , C A,B,C A,B,C 三点共线。

奔驰定理

△ A B C \triangle ABC ABC 中取一点 P P P
在这里插入图片描述
则满足 S △ P B C P A → + S △ P A C P B → + S △ P A B P C → = 0 ⃗ S_{\triangle PBC}\overrightarrow{PA}+S_{\triangle PAC}\overrightarrow{PB}+S_{\triangle PAB}\overrightarrow{PC} = \vec 0 SPBCPA +SPACPB +SPABPC =0

向量与三角形四心

G G G △ A B C \triangle ABC ABC 重心: G A → + G B → + G C → = 0 ⃗ \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\vec 0 GA +GB +GC =0
O O O △ A B C \triangle ABC ABC 外心: O A → sin ⁡ 2 A + O B → sin ⁡ 2 B + O C → sin ⁡ 2 C = 0 ⃗ \overrightarrow{OA}\sin 2A+\overrightarrow{OB}\sin2B+\overrightarrow{OC}\sin2C=\vec 0 OA sin2A+OB sin2B+OC sin2C=0
I I I △ A B C \triangle ABC ABC 内心: I A → sin ⁡ A + I B → sin ⁡ B + I C → sin ⁡ C = a I A → + b I B → + c I C → = 0 ⃗ \overrightarrow{IA}\sin A+\overrightarrow{IB}\sin B+\overrightarrow{IC}\sin C=a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\vec 0 IA sinA+IB sinB+IC sinC=aIA +bIB +cIC =0 a , b , c a,b,c a,b,c ∠ A , ∠ B , ∠ C \angle A,\angle B,\angle C A,B,C 对边)
H H H △ A B C \triangle ABC ABC 垂心: H A → tan ⁡ A + H B → tan ⁡ B + H C → tan ⁡ C = 0 ⃗ \overrightarrow{HA}\tan A+\overrightarrow{HB}\tan B+\overrightarrow{HC}\tan C=\vec 0 HA tanA+HB tanB+HC tanC=0

极化恒等式

△ A B C \triangle ABC ABC 上, D D D B C BC BC 中点。则有 A B → + A C → = A D 2 − 1 4 B C 2 \overrightarrow{AB} +\overrightarrow{AC}=AD^2-\frac{1}{4}BC^2 AB +AC =AD241BC2,这个式子即为极化恒等式。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值