回归(Regression)是机器学习中的一种基本方法,其目标是通过分析自变量与因变量之间的关系,建立一个数学模型来预测因变量的值。
线性回归、多项式回归、正则化线性回归是机器学习中常用的回归分析方法。其中线性回归用直线拟合数据关系,多项式回归用曲线拟合复杂关系,正则化线性回归通过加约束来防止模型过于复杂。
Regression
一、线性回归
****线性回归(Linear Regression)是什么?线性回归是一种统计方法,用于建模两个或多个变量之间的关系。它假设因变量和自变量之间的关系是线性的,并试图找到最小化误差平方和的最佳拟合直线。
如何实现线性回归模型并进行可视化?在Python中实现一个线性回归模型并进行可视化,可以使用scikit-learn
库来拟合模型,并使用matplotlib
库来进行可视化。
import numpy as np``import matplotlib.pyplot as plt``from sklearn.linear_model import LinearRegression``from sklearn.model_selection import train_test_split`` ``# 生成一些示例数据``np.random.seed(0) # 设置随机种子以获得可重复的结果``X = 2 * np.random.rand(100, 1) # 生成100个0到2之间的随机数作为自变量``y = 4 + 3 * X + np.random.randn(100, 1) # 生成因变量,其中加入了随机噪声`` ``# 将数据集拆分为训练集和测试集``X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)`` ``# 创建线性回归模型并拟合训练数据``model = LinearRegression()``model.fit(X_train, y_train)`` ``# 使用模型进行预测``y_pred = model.predict(X_test)`` ``# 可视化结果``plt.scatter(X, y, color='blue', label='Data Points') # 绘制数据点``plt.plot(X_test, y_pred, color='red', linewidth=2, label='Regression Line') # 绘制回归线``plt.xlabel('X')``plt.ylabel('y')``plt.legend()``plt.title('Linear Regression')``plt.show()`` ``# 打印模型参数``print(f'Intercept: {model.intercept_[0]}')``print(f'Coefficient: {model.coef_[0][0]}')
二、多项式回归
多项式回归(Polynomial Regression)******是什么?多项式回归是线性回归的一种推广,它允许因变量和自变量之间存在非线性关系。通过在传统的线性回归模型中增加变量的高次项(如平方项、立方项等),来捕捉数据中的非线性关系****。**
********如何实现多项式回归模型并进行可视化?在Python中实现多项式回归模型并进行可视化,可以使用numpy
来生成数据和计算多项式特征,scikit-learn
的LinearRegression
来拟合模型,以及matplotlib
来进行可视化。
import numpy as np``import matplotlib.pyplot as plt``from sklearn.linear_model import LinearRegression``from sklearn.preprocessing import PolynomialFeatures`` ``# 生成一些示例数据``np.random.seed(0)``X = np.sort(5 * np.random.rand(40, 1), axis=0) # 生成40个0到5之间的随机数并排序作为自变量``y = np.sin(X).ravel() + np.random.normal(0, 0.1, X.shape[0]) # 生成因变量,其中加入了随机噪声`` ``# 定义多项式的次数``degree = 3`` ``# 创建多项式特征``poly = PolynomialFeatures(degree)``X_poly = poly.fit_transform(X)`` ``# 创建线性回归模型并拟合多项式特征数据``model = LinearRegression()``model.fit(X_poly, y)`` ``# 使用模型进行预测``X_test = np.linspace(0, 5, 100).reshape(-1, 1) # 生成测试数据``X_test_poly = poly.transform(X_test)``y_pred = model.predict(X_test_poly)`` ``# 可视化结果``plt.scatter(X, y, color='blue', label='Data Points') # 绘制数据点``plt.plot(X_test, y_pred, color='red', linewidth=2, label='Polynomial Regression') # 绘制多项式回归曲线``plt.xlabel('X')``plt.ylabel('y')``plt.legend()``plt.title(f'Polynomial Regression (degree={degree})')``plt.show()`` ``# 打印模型参数(可选)``# 由于多项式回归的系数较多,这里只打印出来供参考,通常不会直接解释这些系数``print("Model coefficients:", model.coef_)``print("Model intercept:", model.intercept_)
**三、正则化线性回归**
****正则化线性回归(Regularized Linear Regression)****是什么?正则化线性回归是一种用于处理线性回归模型过拟合问题的技术。通过在模型的损失函数中引入额外的惩罚项,限制模型参数的大小,从而减少过拟合的风险。
********正则化线性回归类型****有哪些?****岭回归侧重于通过最小化参数平方和来防止模型过拟合,尤其适用于处理共线性问题;Lasso回归则强调稀疏性,通过推动参数变为零来实现特征选择;弹性网络回归结合了岭回归和Lasso回归的特点,平衡了正则化项,既处理过拟合又进行特征选择。
********如何实现****正则化线性回归模型并进行可视化?在Python中实现正则化线性回归模型并进行可视化,可以使用scikit-learn
库来实现岭回归(Ridge Regression)、Lasso回归以及弹性网络回归(Elastic Net Regression),并使用matplotlib
库来可视化结果。
import numpy as np``import matplotlib.pyplot as plt``from sklearn.linear_model import Ridge, Lasso, ElasticNet``from sklearn.preprocessing import StandardScaler``from sklearn.pipeline import make_pipeline``from sklearn.model_selection import train_test_split`` ``# 生成示例数据``np.random.seed(0)``X = 2 * np.random.rand(100, 1) - 1 # 生成-1到1之间的随机数作为自变量``y = 4 + 3 * X + np.random.randn(100, 1) * 0.5 # 生成因变量,加入随机噪声`` ``# 标准化数据(对于Lasso和ElasticNet很重要)``scaler = StandardScaler()``X_scaled = scaler.fit_transform(X)`` ``# 拆分数据集为训练集和测试集``X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)`` ``# 定义正则化参数``alpha = 1.0`` ``# 创建岭回归模型并拟合数据``ridge = Ridge(alpha=alpha)``ridge.fit(X_train, y_train)`` ``# 创建Lasso回归模型并拟合数据``lasso = Lasso(alpha=alpha)``lasso.fit(X_train, y_train)`` ``# 创建弹性网络回归模型并拟合数据(这里使用l1_ratio=0.5表示L1和L2正则化的混合)``elastic_net = ElasticNet(alpha=alpha, l1_ratio=0.5)``elastic_net.fit(X_train, y_train)`` ``# 使用模型进行预测``X_test_scaled = scaler.transform(X_test) # 注意:测试数据也需要经过相同的标准化处理``y_pred_ridge = ridge.predict(X_test_scaled)``y_pred_lasso = lasso.predict(X_test_scaled)``y_pred_elastic_net = elastic_net.predict(X_test_scaled)`` ``# 可视化结果``plt.scatter(X_test, y_test, color='blue', label='Data Points') # 绘制数据点``plt.plot(X_test, y_pred_ridge, color='red', linewidth=2, label='Ridge Regression') # 绘制岭回归线``plt.plot(X_test, y_pred_lasso, color='green', linewidth=2, label='Lasso Regression') # 绘制Lasso回归线``plt.plot(X_test, y_pred_elastic_net, color='purple', linewidth=2, label='Elastic Net Regression') # 绘制弹性网络回归线``plt.xlabel('X')``plt.ylabel('y')``plt.legend()``plt.title('Regularized Linear Regression')``plt.show()
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈