[环境] OpenAI gym经典控制环境CartPole-v0 介绍

本文介绍了强化学习中的经典环境CartPole-v0,通过作者的学习历程,分享了理解强化学习的方法,并推荐了一些易于入门的资源。文中提到在学习过程中对遇到的问题进行二次解读,旨在帮助读者避免误区。同时,提醒读者官方文档可能存在错误,源码是验证问题的可靠途径。
摘要由CSDN通过智能技术生成

[环境]CartPole-v0

聊一聊我对强化学习的理解
对应的代码请访问我的GitHub:fxyang-bupt(可能你进去之后发现什么都没有,那是因为我注册了新的账号还在整理,这并不影响你先follow一下我的GitHub~)
目前正在把我的文字内容和代码整理成网络书籍的方式发布出来,敬请期待…

我很想把它做成一套简单易懂的白话系列,奈何做这种事真的不简单。我参考了很多资料,比如:
《白话强化学习与PyTorch》
《深入浅出强化学习:原理与入门》
《强化学习入门:从原理到实践》
“莫烦Python”
博客园 “刘建平Pinard” 的博客
北大 “ShusenTang” 的GitHub
……
这是一门比较前言的理论,目前正在发光发热。我并不推荐大家一开始就阅读大部头的《Reinforcement Learning》这本书,假期我花了一个月的时间去啃,效果并不好。反而是这种“平易近人”的教程更适合入门。不过各种“平易近人”的教程都会充斥着笔者自己的理解,这种事容易陷入到自嗨的怪圈,笔者自认为自己举了一个特别通俗的例子,而读者却一头雾水。
所以我把我在学习和实践过程中遇到的困惑,又做了二次解读的加工。有了这个系列的文章,希望能够有所贡献。成为帮助你入门的N多资料的其中之一。
我的代码用的框架比较杂,PyTorch TensorFlow1 TensorFlow2……都有。有人会在意TensorFlow2出来以后,1不是被淘汰了,为什么还要用?
5G都出了多长时间了,你那个卡的

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值