机器学习基石 6.1 Restriction of Break Point

1. Restriction of Break Point

当minimum break point = 2时,还有什么是成立的?

这里写图片描述

因为最小的break point = 2,所以 m H ( 1 ) = 2 1 = 2 m_{\mathcal{H}}(1)=2^1=2 mH(1)=21=2
m H ( 1 ) ⩽ m H ( 2 ) &lt; 4 {m_{\mathcal{H}}}(1) \leqslant m_{\mathcal{H}}(2)&lt;4 mH(1)mH(2)<4,所以 m H ( 2 ) {m_{\mathcal{H}}}(2) mH(2)最大是3。

N = 3 N=3 N=3时,仍然要满足 N = 2 N=2 N=2是break point,即这三个点中的任意两个点不能被shatter。

经过尝试可知, m H ( 3 ) {m_{\mathcal{H}}}(3) mH(3)最大是4。

这里写图片描述

这个结果远小于8,说明break point的存在会在很大程度上限制 m H m_{\mathcal{H}} mH的增长。

这里写图片描述

想法:如果 m H m_{\mathcal{H}} mH能被限制在多项式范围内,那么问题就解决了。

这里写图片描述

2. Fun Time

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值