1. Restriction of Break Point
当minimum break point = 2时,还有什么是成立的?
因为最小的break point = 2,所以
m
H
(
1
)
=
2
1
=
2
m_{\mathcal{H}}(1)=2^1=2
mH(1)=21=2。
而
m
H
(
1
)
⩽
m
H
(
2
)
<
4
{m_{\mathcal{H}}}(1) \leqslant m_{\mathcal{H}}(2)<4
mH(1)⩽mH(2)<4,所以
m
H
(
2
)
{m_{\mathcal{H}}}(2)
mH(2)最大是3。
当 N = 3 N=3 N=3时,仍然要满足 N = 2 N=2 N=2是break point,即这三个点中的任意两个点不能被shatter。
经过尝试可知, m H ( 3 ) {m_{\mathcal{H}}}(3) mH(3)最大是4。
这个结果远小于8,说明break point的存在会在很大程度上限制 m H m_{\mathcal{H}} mH的增长。
想法:如果 m H m_{\mathcal{H}} mH能被限制在多项式范围内,那么问题就解决了。