前几天小组讨论会上展示了kd-tree(k-dimension tree),感觉这玩意儿还挺有用的,所以学习了一下它的原理,然后把其中的构建kd-tree以及对应的查询操作实现了一下,现在跟大家分享一下
首先说一下什么是kd-tree把
不过首先得说一下bst(二叉查找树),递归定义如下:如果左子树上的节点存储的数值都小于根节点中存储的数值,并且右子树上的节点存储的数值都大于根节点中存储的数值,那么这样的二叉树就是一颗二叉查找树
有了bst的概念,那么kd-tree就 容易理解多了,首先kd-tree的节点中存储的数值是一个k维的数据点,而bst的节点中存储的可以视为是1维的数据点,kd-tree与bst不同的地方在于进行分支决策的时候,还需要选择一个维度的值进行比较,选择哪个维度呢?每个节点还需要维护一个split变量,表示进行分支决策的时候,选择哪个维度的值进行比较,现在给出一个kd-tree节点的定义
class KD_node:
def __init__(self, point=None, split=None, LL = None, RR = None):
"""
point:数据点
split:划分域
LL, RR:节点的左儿子跟右儿子
"""
self.point = point
self.split = split
self.left = LL
self.right = RR
point就代表节点存储的k维数据点,left,right分别代表指向左右儿子的指针,split代表划分维度,在节点进行划分之前,我们需要确定划分维度,那么怎么选择划分维度呢,这又要从kd-tree的用途开始说起了
kd-tree是一种对高维空间的数据点进行划分的特殊数据结构,主要应用就是高维空间的数据查找,如:范围搜索和K近邻(knn)搜索,范围搜索就是给定查询点和距离阈值,获取在阈值范围内的所有数据点;knn搜索就是给定查询点和搜索点的数目n,查找出到搜索点最近的n个点的数目;
以上这两种搜索如果通过传统方法来实现,那么最坏情况下可能会穷举 数据急中的所有点,这种方法的缺点就是完全没有利用到数据集中蕴藏的结构信息,当数据点很多时,搜索效率不高;
事实上,实际数据集中的点一般时呈簇状分布的,所以,很多点我们是完全没有必要遍历的,索引树的方法就是对将要搜索的点进行空间划分,空间划分可能会有重叠,也可能没有重叠,kd-tree就是划分空间没有重叠的索引树
这样说可能有一点乱,那我还是以“二分查找”作为引入吧
如果给你一组数据 9 1 4 7 2 5 0 3 8
让你查找8,如果你挨个查找,那么将会把数据集都遍历一遍,
如果你排一下序那现在数据集就变成了: