Milvus 全面解析

Milvus是鹰科鹰属的一种猛禽,以飞行速度快、视力敏锐和适应能力强而闻名。

Zilliz 以其开源高性能、高可扩展性矢量数据库 Milvus 命名,该数据库可在从笔记本电脑到大型分布式系统等各种环境中高效运行。它既可以作为开源软件使用,也可以作为云服务使用。

Milvus 由 Zilliz 开发,并很快捐赠给 Linux 基金会旗下的 LF AI & Data 基金会,如今已成为全球领先的开源向量数据库项目之一。它基于 Apache 2.0 许可证发布,大多数贡献者均为高性能计算 (HPC) 社区的专家,擅长构建大规模系统并优化硬件感知代码。核心贡献者包括来自 Zilliz、ARM、NVIDIA、AMD、英特尔、Meta、IBM、Salesforce、阿里巴巴和微软的专业人士。

有趣的是,每个 Zilliz 开源项目都以一种鸟的名字命名,这种命名惯例象征着自由、远见和技术的敏捷演变。

非结构化数据、嵌入和 Milvus

非结构化数据(例如文本、图像和音频)格式多样,并带有丰富的底层语义,因此分析起来颇具挑战性。为了应对这种复杂性,嵌入技术可用于将非结构化数据转换为能够捕捉其基本特征的数值向量。这些向量随后存储在向量数据库中,从而实现快速且可扩展的搜索和分析。

Milvus 提供强大的数据建模功能,让您能够将非结构化或多模态数据组织成结构化集合。它支持多种数据类型,用于不同的属性建模,包括常见的数值和字符类型、各种向量类型、数组、集合和 JSON,让您免于维护多个数据库系统。

Untructured data, embeddings, and Milvus

非结构化数据、嵌入和 Milvus

Milvus 提供三种部署模式,涵盖广泛的数据规模——从 Jupyter Notebooks 中的本地原型设计到管理数百亿向量的大规模 Kubernetes 集群:

  • Milvus Lite 是一个 Python 库,可以轻松集成到您的应用程序中。作为 Milvus 的轻量级版本,它非常适合在 Jupyter Notebook 中快速构建原型,或在资源有限的边缘设备上运行。了解更多
  • Milvus Standalone 采用单机服务器部署,所有组件捆绑到单个 Docker 镜像中,方便部署。了解更多
  • Milvus Distributed 可部署在 Kubernetes 集群上,其云原生架构专为亿级甚至更大规模场景而设计。该架构确保关键组件的冗余。了解更多

Milvus 为何如此之快?

Milvus 从设计之初就致力于打造一个高效的矢量数据库系统。在大多数情况下,Milvus 的性能比其他矢量数据库高出 2 到 5 倍(参见 VectorDBBench 测试结果)。如此高性能源于以下几个关键的设计决策:

硬件感知优化:为了使 Milvus 能够在各种硬件环境中运行,我们针对多种硬件架构和平台专门优化了其性能,包括 AVX512、SIMD、GPU 和 NVMe SSD。

### 对 Milvus 进行性能测试 #### 工具安装 为了对 Milvus 数据库执行性能测试,可以采用官方提供的 `Milvus Benchmark` 工具。此工具允许用户轻松设置并运行一系列预定义的工作负载来评估系统的响应时间、吞吐量和其他重要参数。 通过 Python 包管理器 pip 可以方便地安装所需的软件包: ```bash pip install pymilvus pip install milvus-benchmark ``` 这些命令会下载并配置好必要的环境以便后续操作[^1]。 #### 测试方案设计 当准备就绪之后,可以根据具体的业务需求定制化一套合理的测试计划。这通常涉及到决定要模拟的数据集规模大小、索引类型的选择以及查询模式的设计等因素。例如,在实际应用环境中常见的相似度搜索场景下,可以选择不同维度的向量数据作为输入样本,并调整每次请求返回的结果数量上限等参数来进行多角度评测。 另外值得注意的是,除了基本的功能验证外,还应该关注资源消耗情况如 CPU 利用率、内存占用水平等方面的表现,从而全面了解目标平台的实际承载力和稳定性表现。 #### 性能指标考量 在衡量 Milvus 的性能时,几个核心指标值得特别注意: - **每秒查询次数 (QPS)**:反映了系统处理并发请求的能力; - **延迟**:即从发出请求到接收到回复之间的时间间隔,低延迟意味着更快的服务响应速度; - **性价比(QP$)**:考虑成本因素下的效率评价标准之一; 上述各项可以通过内置报告功能获取直观展示图表辅助分析决策过程[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FeelTouch Labs

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值