电路中普遍存在的元件——电阻、电容、电感

    我们在实际电子回路设计及应用时,有时总会碰到令人头大的问题:电子回路是好的,信号传输没问题,阻抗匹配也符合要求,而实际应用时就会发现输出无法稳态建立,回路中部分损耗较大,在阻、容、感三大常见参数适当调整后,又会得到我们期望的结果。可见我们常见的基本元件还需要深喑其道。

  • 电阻R

电阻元件简称为电阻。电阻元件上电压和电流之间的关系称为伏安特性。若电阻元件的伏安特性曲线在u-i平面上是一条通过坐标原点的直线,则称为线性电阻。

线性电阻两端的电压u和流过它的电流i之间的关系服从欧姆定律:U=IR。

公式中,R为元件的电阻,是一个与电压、电流无关的常数,单位为Ω。

线性电阻的电压与电流之间的关系称为线性函数关系。线性函数关系需要具有以下性质:

  1. 比例性(齐次性):若电流增减k倍,则电压亦增减k倍。
  2. 可加性:若电流I1、I2在电阻R上分别产生的电压为U_{1}=RI_{1}U_{2}=RI_{2},则电流之和I_{1}+I_{2}产生电压为U=R(I_{1}+I_{2})=U_{1}+U_{2}

 电阻吸收的功率为:P=UI=RI^{2}=\tfrac{U^{2}}{R^{}};

从T1到T2的时间内,电阻元件吸收的能量为W=\int_{T1}^{T2}Ri^{2}dt

电阻吸收的电能全部转化为热能,是不可逆的能量转换过程。因此,电阻是一个耗能元件。

若电阻元件的电压和电流之间不是线性函数关系,则称为非线性电阻。非线性电阻在U-I平面上的伏安特性曲线是通过坐标原点或不通过坐标原点的曲线。(二极管就是典型的非线性电阻元件)。

实际的电阻元件在应用上为电阻器,电阻器种类上可分为铸铁电阻器、绕线电阻器、碳膜电阻器、金属膜电阻器、水泥电阻、功率电阻等。  

电阻器的主要参数为标称阻值、允许偏差和额定功率

电阻器阻值常见的表示方法有直标法和色标法。

图1 不同封装贴片电阻详情图

  • 电感L

电感元件简称为电感。当有电流I流过电感元件时,其周围将产生磁场。若电感线圈共有N匝,通过每匝线圈的磁通为\varnothing,则线圈的匝数与穿过线圈的磁通之乘积为N\varnothing,若电感元件中的磁通和电流i之间是线性函数关系,则称为线性电感。若电感元件中的磁通和电流i之间不是线性函数关系,则称为非线性电感。

线性电感情况下,电感元件的特性方程为:N\varnothing =LI;

公式中,L为元件的电感,是一个与磁通、电流无关的常数,单位为H。磁通的单位为韦伯[Wb]。

当流过电感元件的电流i随时间变化时,则要产生自感电动势e_{i}、元件两端就有电压U。

计算公式为e_{L}=-\tfrac{dN\varnothing }{dt}=-L\tfrac{di}{dt};     U=-e_{L}=L\tfrac{di}{dt};

公式中表明,线性电感的端电压U与电流I对时间的变化率di/dt成正比。对于恒定电流(即直流电),电感元件的端电压为0,故在直流电路的稳态情况下,电感元件相当于短路。

电感是一个存储磁场能量的元件,当时间由0到T,流过电感的电流i由0变到I时,电感上所存储的磁场能量为W_{L}=\int_{0}^{T}uidt=\int_{0}^{I}Lidt=\tfrac{1}{2}Li^{2}

上式公式表明了电感元件在某一时刻的储能只取决于该时刻的电流值,而与电流的过去变化进程无关。

实际的电感元件在应用上为电感器,电感器就是用导线绕制而成的线圈,有的电感线圈含由铁心、称为铁心线圈,线圈放入铁心可大大增加电感的数值,但却引起了非线性,产生了铁心损耗。

电感器的主要参数为电感值和额定电流

  • 电容C

电容元件简称为电容,当电容元件两端加有电压U时,它的极板上就会储存电荷量Q,若电荷量Q和电压U之间是线性函数关系,则称为线性电容,若电容元件的电荷量与电压之间不是线性函数关系,则称为非线性电容。

线性电容情况下,线性函数特性方程为Q=CU,公式中,C为元件的电容,是一个与电荷量、电压无关的常数,单位为法拉[F]。由于法拉的单位太大,实际应用中常采用μF、nF、pF。

1F=10^{^{6}}μF=10^{^{9}}nF=10^{12}PF。

当电容元件两端的电压U随时间变化时,极板上储存的电荷量就随之变化,电路回路中与极板连接的导线中就有电流。计算公式为I=\tfrac{dQ}{dt}=C\tfrac{dU}{dt}

公式中表明线性电容的电流i与端电压U对时间的变化率du/dt成正比。对于恒定电压,电容端电压的变化率为零,故在直流稳定情况下,电容元件相当于开路。

与电感类似,电容也是一个储能元件,能量储存与电容的电场之中。当时间由0到T,电容的端电压U由0变到U时,电容所储存的电场能量为W_{C}=\int_{0}^{T}uidt=\int_{0}^{U}cudu=\frac{1}{2}CU^{2}

上式公式表示了电容元件在某一时刻的储能只取决于该时刻的电压值,而与电压过去的变化进程无关。

实际的电容元件在应用上为电容器,电容器通常由绝缘介质隔开的金属极板组成,种类上可分为电解电容、陶瓷电容、独石电容、云母电容、薄膜电容、钽电容、瓷介电容、固体电容等。

电容器的主要参数为电容值和额定电压


吐槽一下:公式编辑器好难用,耽搁时间好久......

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值