【区块链通用服务平台及组件】全国产金融级区块链一体机 | FISCO BCOS 应用案例

中国电子旗下飞腾公司携高性能服务器CPU 飞腾腾云S5000C、中国长城携擎天产品家族与深圳市金融区块链发展促进会(金链盟) 基于FISCO BCOS 打造全国产金融级区块链一体机解决方案, 为产业数字化构筑安全牢靠的高性能技术底座。

FISCO BCOS 区块链一体机是面向特定、关键行业打造的,从硬件底层到应用层全链条安全的区块链软硬件协同标杆方案,旨在更好服务行业对于数据共享的需求,助力产业数字化。

FISCO BCOS 区块链一体机主要架构分为: 基础架构层、操作系统层、FISCO BCOS 区块链层及密码加速卡。

1. 基础架构层
长城RF 系列服务器: 作为系统的物理载体, 提供必要的计算和存储能力, 支持安全启动、可信计算3.0, 确保整机在启动阶段不被篡改、运行阶段持续被度量,以及发现异常后及时执行可信策略。

●飞腾S5000C 处理器安全平台架构(PSPA) : 从生命周期管理、抗物理攻击、密码加速引擎、可信执行环境、安全启动等维度强化了安全处理器的软硬件功能,增强整机安全性。

2. 操作系统层
OS 可信增强系统:提供安全加固的操作系统环境,确保系统软件的安全性,增加麒麟等操作系统的主动免疫能力,使其具备等保2.0 标准对“安全计算环境”要求的全部安全功能。

●区块链可信应用软件: 在TEEOS 中保护上链过程, 在边缘和网络端构建TEE 可信执行环境, 保证了系统从数据采集终端到上云过程中的稳定性,实现数据安全可信、不可篡改。

●可信管理平台: 提供图形化的可信管理中心,在可信引导程序、可信内核、应用执行控制、动态度量技术、可信安全架构五个方面,实现操作系统级的可信度量,保障用户信息安全。

3.FISCO BCOS 区块链层
运行在一体机上的区块链节点基于FISCO BCOS 区块链底层平台进行了升级改造,主要架构如下:

FISCO BCOS 区块链层架构图

目前,FISCO BCOS 已实现从底层算力到操作系统、再到服务器平台的完整国产化支持,在计算、网络、存储等各环节实现区块链访问全流程的安全防护。在一体机中,FISCO BCOS 与飞腾腾云S5000C 高性能服务器CPU 进行深度融合,提供安全高效的国产解决方案。

4. 密码加速卡
●区块链密码接口: 提供一系列标准化的API 接口,包括生成密钥、密钥导入导出、哈希运算、签名与验签、密码运算等功能, 使区块链平台能够快速且无缝利用硬件加速能力, 同时保持系统的灵活性和可维护性, 保障区块链数据的
安全性。

●硬件安全隔离: 密码运算在密码卡受保护的状态下执行,有效防范了旁路攻击和恶意软件,保证敏感信息的安全。

依托飞腾腾云S5000C 芯片和中国长城RF 系列服务器的强大算力支持, FISCO BCOS 系统测试的所有用例均实现了100% 的通过率。FISCO BCOS 一体机在设计上综合考虑了安全性、高性能和易用性, 为用户提供强大且安全的技术支持,其特点包括国产生态的深度融合,成为构建完整国产信息技术生态系统的重要组成部分。

该一体机面向金融级应用的高可用性进行了优化, 能稳定高效地处理高并发和低延迟的交易需求。同时, 其数据保障和备份机制支持共识、观察和轻节点的不同形态节点组网, 实现分布式容错与恢复, 确保交易数据的实时存储和备份,即使在系统故障的情况下也能保障数据的安全与完整。

在硬件协同加速方面, 飞腾腾云S5000C 芯片内置的安全技术显著提升了运算性能, 进一步强化了区块链的安全性。此外, 该一体机具备开箱即用的组件生态, 支持丰富的应用模块和开发组件, 以满足不同行业和场景的需求, 提供一站式的区块链解决方案, 简化部署和运维的复杂性, 并允许用户根据实际业务需求灵活选择和扩展所需的组件, 实现个性化配置。

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值