[深度学习][原创]yolo训练时候提示页面文件太小,无法完成操作5种解决方法

翻看了很多博客,目前提供有5种方法解决,由于方法众多难以验证。看看具体方法

第一种方法:更改虚拟内存

这种方法可以参考文章:但是更改虚拟内存有个问题,究竟是改anaconda3安装磁盘的虚拟内存还是yolov5源码所在磁盘呢,这个网上都没说清楚。但是更改过我有时候可以解决问题,但是YOLO系列——[WinError 1455] 页面文件太小,无法完成操作_Star星屹程序设计的博客-CSDN博客_yolo页面文件太小

有时候就突然不行了,有个博客说法是其实你即使增加虚拟内存实际也是没用的,参考博客已经禁用了虚拟内存,为什么还提示“页面文件太小 无法完成操作 ”_Ideality_hunter的专栏-CSDN博客

不过这种说法暂时无法证明

第二种方法:更改batch size大小

这种方法是通过降低batch size大小,这种效果我使用时候往往效果很好通常设置1或者2可以很好解决,但是这样一来显存占用就小了训练相对慢

第三种方法:更改num_workers为0或者1

这种方法参考博客:OSError: [WinError 1455] 页面文件太小,无法完成操作_每个脚印都值得被记录-CSDN博客_页面文件太小,无法完成操作

这种方法有时候会有作用,有时候却不行

第四种方法:想办法关掉无关程序尽量在cmd操作

这种是降低内存方法,其实说到底这个报错就是内存不足引起,经过测试发现pycharm即使什么也不干也会吃掉你的2GB内存,所有不用pycharm训练有时候是个明智选择

第五种方法:保证磁盘空间充足

参考博客:

pycharm/pytorch 页面文件太小,无法完成操作_幽哈的博客-CSDN博客_页面文件太小,无法完成操作

这种方法暂时无法验证。不过可能性不大,最可能是C盘情况空间不足造成,但是我放D盘充足时候也会报错。

此外经过我在github查找资料发现,很少有这个报错解决方法。暂时只有这几种解决方法。如果你想不想减少batch size太小我建议清理无关内存然后设置虚拟内存试试,此外降低num_worker值,可能会解决您的问题。如果您看到这个文章说明你大概率遇到这个问题,如果您解决了这个问题请在评论留言,让广大网友参考一下。

### 关于 YOLO 训练过程中因页面文件过小导致无法操作的问题 在 Windows 系统上运行 YOLO 模型训练,可能会遇到 `OSError: [WinError 1455] 页面文件太小无法完成操作` 的错误。此问题通常由虚拟内存不足引起,尤其是在处理大型数据集或模型复杂度较高。 以下是针对该问题的解决方案: #### 增加虚拟内存设置 Windows 系统中的页面文件(Pagefile.sys)用于扩展物理内存容量。当可用 RAM 不足操作系统会利用硬盘上的这部分空间作为补充。如果页面文件大小不足以支持当前任务,则会出现上述错误。可以通过调整页面文件大小来解决问题[^1]。 具体方法如下: 1. 打开 **控制面板** -> **系统和安全** -> **系统**。 2. 单击左侧菜单中的 **高级系统设置**。 3. 切换到 **高级** 标签页,在性能部分点击 **设置**。 4. 转至 **高级** 标签页下的虚拟内存区域,点击 **更改**。 5. 取消勾选“自动管理所有驱动器的分页文件大小”,手动指定自定义大小。建议初始值设为至少 8GB 或更高,最大值可设定为计算机总存储量的一半以上[^2]。 #### 减少 GPU/CPU 使用率 除了增加虚拟内存外,还可以通过降低资源消耗缓解压力。例如减少批量尺寸 (`--batch-size`) 参数可以有效减轻显存负担[^4]: ```bash python train.py --cfg yolov5n.yaml --batch-size 2 --epochs 1 ``` #### 更新依赖库版本 有 DLL 文件加载失败也可能引发类似的错误提示。因此需要确认安装环境内的 CUDA 和 cuDNN 是否匹配所使用的 PyTorch 版本,并重新下载对应组件以排除潜在冲突[^3]: 对于 Anaconda 用户来说,可通过命令行更新相关包: ```bash conda update pytorch torchvision torchaudio cudatoolkit -c pytorch -c conda-forge ``` 经过上述配置修改之后再次尝试启动程序应该能够正常工作。 --- ### 提供一段 Python 测试脚本验证改动效果 下面提供了一段简单的测试代码用来检查新的参数下能否顺利完成一次迭代过程而不再抛出异常情况: ```python import torch from ultralytics import YOLO def test_yolo_training(): model = YOLO('yolov8n.pt') # 加载预训练权重 results = model.train(data='path/to/dataset', epochs=1, batch=2) if __name__ == "__main__": try: device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Using {device} for testing...") with torch.device(device): test_yolo_training() except Exception as e: print(e) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FL1623863129

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值