YOLO系列——[WinError 1455] 页面文件太小,无法完成操作

最近在用yolo系列训练自己的数据,但是在调参数时,batch_size稍微网上调整点就会出错(比如:4,8等),报错信息如下:提示页面文件太小

  • [WinError 1455] 页面文件太小,无法完成操作。 Error loading "D:\ProgramData\Anaconda3\envs\yolov5_gpu\lib\site-pack

一、首先考虑虚拟内存的大小

修改windows的虚拟内存:

这里可以看到,自动管理状态下的虚拟内存很小,根本不满足需求 

 这里,我们根据实际情况设置:我的系统盘是500G的,这里我设置200G给虚拟内存用,可以看到下面在设置大batch_size后没有再报错

 二、可以考虑模型参数

修改yolov5代码,修改文件在 yolov5\utils\datasets.py,修改参数 num_workers为0

三、batch_size

如果上述两种方法还是报错的话,可以将训练模型的 batch_size 设置小一点

### 解决 Windows 系统中页面文件过小导致的 OSError 问题 当在 Windows 上运行 YOLOv8 或其他深度学习框架时,如果遇到 `OSError: [WinError 1455] 页面文件太小无法完成操作` 的错误,这通常是因为系统的虚拟内存(即页面文件)不足以支持当前任务的需求。此问题可以通过调整系统设置来解决。 #### 调整页面文件大小 为了增加可用的虚拟内存,可以手动增大页面文件的大小: 1. **打开高级系统设置** 右键单击“此电脑”,选择“属性”。随后点击左侧菜单中的“高级系统设置”。 2. **进入性能选项** 在弹出的窗口中切换到“高级”标签页,找到“性能”部分并点击“设置”。 3. **配置虚拟内存** 切换至“高级”标签页,在“虚拟内存”区域点击“更改”按钮。 4. **修改页面文件参数** 勾选“无分页文件”的反向选项,取消勾选“自动管理所有驱动器的分页文件大小”。接着选择安装操作系统所在的磁盘(通常是 C 盘),点击“自定义大小”,并将初始大小和最大值设为推荐范围内的较高数值(例如 8GB 至 16GB)。完成后点击“设置”保存更改[^4]。 #### 减少资源消耗 除了扩大页面文件外,还可以通过优化模型运行环境减少对硬件资源的压力: - **降低批量尺寸 (`batch_size`)** 如果 GPU 显存有限,则应适当减小批次数量以缓解压力。例如将默认批处理数从较大值改为较小值如 4 或者更少。 - **禁用 cuDNN 加速功能** 添加如下代码片段于程序入口处可关闭 cuDNN 自动寻找最佳算法的功能从而节省额外开销: ```python import torch torch.backends.cudnn.enabled = False ``` - **清理未使用的变量** 使用 Python 的垃圾回收机制释放不再需要的对象所占用的空间;或者利用 PyTorch 提供的方法清空缓存数据结构比如梯度张量等。 以上措施能够帮助克服因物理内存不足引发的一系列异常状况包括但不限于 `[WinError 1455]`. ```python import torch torch.cuda.empty_cache() # 清理CUDA上的缓存 ``` --- ###
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Star星屹程序设计

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值