[深度学习][python]mediapip的人脸关键点图解

这篇博客深入探讨了mediapip在人脸关键点检测中的技术细节,指出实际代码中存在478个关键点,其中468-472和473-477分别对应左右眼的额外关键点。这一发现对于理解面部识别技术的精度提升具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

mediapip的人脸关键点一共有468个我在图中只看到467最大值,但是实际代码输出的478的关键点,从输出结果索引468-472存储的是人眼左边5个关键点,473-477存储的是人眼右边5个关键点。关键点图在网上还有点难找因此放这里,图片需要放大才能开清楚位置数字。

 

### 使用MediaPipe进行人脸关键点检测训练 #### 安装依赖项 为了使用MediaPipe进行开发,需先安装必要的Python包。可以通过pip命令完成这些操作。 ```bash pip install mediapipe opencv-python ``` #### 加载预训练模型 MediaPipe提供了名为"FaceMesh"的预训练模型,该模型能够实现实时检测人脸上的468个特征点[^2]。下面是一个简单的例子展示如何加载此模型: ```python import cv2 import mediapipe as mp mp_face_mesh = mp.solutions.face_mesh face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1) image_path = "path_to_your_image" image = cv2.imread(image_path) results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) if results.multi_face_landmarks: for face_landmarks in results.multi_face_landmarks: # 这里可以处理每一个面部的关键点数据 pass ``` #### 自定义训练流程 对于想要自定义训练过程的情况,需要注意的是MediaPipe本身并不直接提供重新训练或微调现有模型的功能。然而,如果希望调整模型性能或者适应特定场景,则可能需要考虑以下几个方面: - **收集标注好的数据集**:准备一组高质量的人脸图像及其对应的关键点位置作为训练样本。 - **迁移学习**:利用其他支持迁移学习的深度学习框架(如TensorFlow、PyTorch),基于MediaPipe所使用的架构构建新的网络结构,并导入官方发布的权重文件作为初始化参数。 - **优化超参数**:通过实验找到最适合目标环境的最佳配置选项,比如批量大小(batch size),迭代次数(epochs)等。 由于MediaPipe主要专注于部署而非训练新模型,因此建议探索上述提到的替代方案来满足更复杂的定制需求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FL1623863129

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值