基于yolov8的人员溺水检测告警监控系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】

基于YOLOv8的人员溺水检测告警监控系统是一种高效、智能的安全监控解决方案。该系统利用YOLOv8目标检测算法的先进性能,实现了对水域中人员溺水行为的精准识别与快速响应。

YOLOv8继承了YOLO系列算法的优点,如单次预测、速度快、精度高,并进一步优化了模型性能和泛化能力。该系统通过实时视频分析,能够在复杂环境中快速锁定水中人员的位置,并准确判断其是否处于溺水状态。

一旦检测到溺水行为,系统会立即触发告警,通知相关人员及时介入救援,从而有效减少溺水事故的发生。同时,该系统还支持视频数据采集自动化、数据传输和智能分析,为水域安全管理提供了全面的技术支持。

此外,基于YOLOv8的人员溺水检测告警监控系统还具备高度的灵活性和可扩展性,可根据实际需求进行定制化开发和部署,适用于各类水域场景的安全监控需求。

【效果展示】

【测试环境】

windows10
anaconda3+python3.8
torch==1.9.0+cu111
ultralytics==8.2.70

【训练数据集】

https://blog.csdn.net/FL1623863129/article/details/140031636

注意模型训练数据集可能和上述数据集存在差异,源于对数据集优化整理可能会导致数据集类别或者图片数增加或者减少,大体数据集保持一致

【模型可以检测出类别】

Drowning
Person out of water
Swimming

【训练信息】

参数
训练集图片数23898
验证集图片数1173
训练map84.6%
训练精度(Precision)88.2%
训练召回率(Recall)77.2%
验证集测试精度信息

类别

MAP50(单位:%)

all

83

Drowning

87

Swimming

83

【部分实现源码】

class Ui_MainWindow(QtWidgets.QMainWindow):
    signal = QtCore.pyqtSignal(str, str)

    def setupUi(self):
        self.setObjectName("MainWindow")
        self.resize(1280, 728)
        self.centralwidget = QtWidgets.QWidget(self)
        self.centralwidget.setObjectName("centralwidget")

        self.weights_dir = './weights'

        self.picture = QtWidgets.QLabel(self.centralwidget)
        self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))
        self.picture.setStyleSheet("background:black")
        self.picture.setObjectName("picture")
        self.picture.setScaledContents(True)
        self.label_2 = QtWidgets.QLabel(self.centralwidget)
        self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))
        self.label_2.setObjectName("label_2")
        self.cb_weights = QtWidgets.QComboBox(self.centralwidget)
        self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))
        self.cb_weights.setObjectName("cb_weights")
        self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)

        self.label_3 = QtWidgets.QLabel(self.centralwidget)
        self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))
        self.label_3.setObjectName("label_3")
        self.hs_conf = QtWidgets.QSlider(self.centralwidget)
        self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))
        self.hs_conf.setProperty("value", 25)
        self.hs_conf.setOrientation(QtCore.Qt.Horizontal)
        self.hs_conf.setObjectName("hs_conf")
        self.hs_conf.valueChanged.connect(self.conf_change)
        self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))
        self.dsb_conf.setMaximum(1.0)
        self.dsb_conf.setSingleStep(0.01)
        self.dsb_conf.setProperty("value", 0.25)
        self.dsb_conf.setObjectName("dsb_conf")
        self.dsb_conf.valueChanged.connect(self.dsb_conf_change)
        self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))
        self.dsb_iou.setMaximum(1.0)
        self.dsb_iou.setSingleStep(0.01)
        self.dsb_iou.setProperty("value", 0.45)
        self.dsb_iou.setObjectName("dsb_iou")
        self.dsb_iou.valueChanged.connect(self.dsb_iou_change)
        self.hs_iou = QtWidgets.QSlider(self.centralwidget)
        self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))
        self.hs_iou.setProperty("value", 45)
        self.hs_iou.setOrientation(QtCore.Qt.Horizontal)
        self.hs_iou.setObjectName("hs_iou")
        self.hs_iou.valueChanged.connect(self.iou_change)
        self.label_4 = QtWidgets.QLabel(self.centralwidget)
        self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))
        self.label_4.setObjectName("label_4")
        self.label_5 = QtWidgets.QLabel(self.centralwidget)
        self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))
        self.label_5.setObjectName("label_5")
        self.le_res = QtWidgets.QTextEdit(self.centralwidget)
        self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))
        self.le_res.setObjectName("le_res")
        self.setCentralWidget(self.centralwidget)
        self.menubar = QtWidgets.QMenuBar(self)
        self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))
        self.menubar.setObjectName("menubar")
        self.setMenuBar(self.menubar)
        self.statusbar = QtWidgets.QStatusBar(self)
        self.statusbar.setObjectName("statusbar")
        self.setStatusBar(self.statusbar)
        self.toolBar = QtWidgets.QToolBar(self)
        self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)
        self.toolBar.setObjectName("toolBar")
        self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)
        self.actionopenpic = QtWidgets.QAction(self)
        icon = QtGui.QIcon()
        icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionopenpic.setIcon(icon)
        self.actionopenpic.setObjectName("actionopenpic")
        self.actionopenpic.triggered.connect(self.open_image)
        self.action = QtWidgets.QAction(self)
        icon1 = QtGui.QIcon()
        icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action.setIcon(icon1)
        self.action.setObjectName("action")
        self.action.triggered.connect(self.open_video)
        self.action_2 = QtWidgets.QAction(self)
        icon2 = QtGui.QIcon()
        icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action_2.setIcon(icon2)
        self.action_2.setObjectName("action_2")
        self.action_2.triggered.connect(self.open_camera)

        self.actionexit = QtWidgets.QAction(self)
        icon3 = QtGui.QIcon()
        icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionexit.setIcon(icon3)
        self.actionexit.setObjectName("actionexit")
        self.actionexit.triggered.connect(self.exit)

        self.toolBar.addAction(self.actionopenpic)
        self.toolBar.addAction(self.action)
        self.toolBar.addAction(self.action_2)
        self.toolBar.addAction(self.actionexit)

        self.retranslateUi()
        QtCore.QMetaObject.connectSlotsByName(self)
        self.init_all()

【使用步骤】

使用步骤:
(1)首先根据官方框架https://github.com/ultralytics/ultralytics安装教程安装好yolov8环境,并安装好pyqt5
(2)切换到自己安装的yolov8环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可

【提供文件】

python源码
yolov8s.onnx模型(不提供pytorch模型,如需pytorch模型需要https://blog.csdn.net/FL1623863129/article/details/140031636下载数据集自己训练)
训练的map,P,R曲线图(在weights\results.png)
测试图片(在test_img文件夹下面)

【视频演示】

基于yolov8的人员溺水检测告警监控系统python源码+onnx模型+评估指标曲线+精美GUI界面_哔哩哔哩_bilibili【测试环境】windows10anaconda3+python3.8torch==1.9.0+cu111ultralytics==8.2.70更多信息参考博文:https://blog.csdn.net/FL1623863129/article/details/141630856, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:C#使用纯opencvsharp部署yolov8-onnx图像分类模型,YOLOv8检测界面-PyQt5实现,基于onnx模型加密与解密深度学习模型保护方法介绍,使用纯opencv部署yolov8目标检测模型onnx,[课程][原创]yolov8检测封装成类调用几句代码完成目标检测任务课程导论,将yolov8的旋转框封装成类几句代码完成旋转目标检测,C++版本yolov8的onnx模型加密方法保护自己模型和版权,基于C#实现winform版yolov8-onnx+bytetrack目标追踪的算法结果演示,手把手教你用YOLOv8训练自己的数据集(原理解析+代码实践),基于yolov8官方目标追踪botsort和bytetrack源码开发视频演示icon-default.png?t=O83Ahttps://www.bilibili.com/video/BV1bjsKeXEri/

【源码下载地址】

https://download.csdn.net/download/FL1623863129/89684725

要实现使用YOLOv8模型进行溺水检测并通过PyQt5开发的GUI界面进行实时监控,首先需要了解YOLOv8模型的基本工作原理和如何在Python环境中部署。YOLOv8是一种高效的目标检测算法,适用于处理视频流中的实时目标检测任务。接下来,Python源码将作为开发基础,通过调用预训练的YOLOv8模型来识别监控画面中的溺水行为。此外,PyQt5是用于创建GUI的库,可以用来制作一个直观、用户友好的监控界面。在此过程中,需要掌握以下技术细节: 参考资源链接:[Yolov8实现的溺水检测监控系统GUI界面教程](https://wenku.csdn.net/doc/749g64a909?spm=1055.2569.3001.10343) 1. 准备工作:确保你的开发环境中安装了Python和必要的库,如PyTorch、Pillow(用于图像处理)、PyQt5等。可以通过Anaconda快速创建并管理这样的环境。 2. 模型部署:将YOLOv8模型转换为ONNX格式,以便在不同的深度学习框架中部署。使用PyTorch可以轻松完成这一转换过程,并通过ONNXruntime来加载和运行模型。 3. 实时视频流处理:利用OpenCV库来捕获视频流,并将每一帧图像输入到YOLOv8模型中进行处理。确保处理速度能够满足实时监控的要求。 4. GUI界面设计:利用PyQt5设计GUI界面,包括实时视频显示窗口、告警通知区域等。需要编写事件处理代码来响应不同的用户操作,如开始监控、停止监控等。 5. 结果展示告警:将YOLOv8模型检测到的溺水行为结果展示在GUI界面上,并设置告警机制。例如,当检测溺水行为时,可以触发声音告警或弹窗提示。 6. 系统测试:在系统完成后,进行全面的测试,确保GUI界面响应正确,视频监控流畅,以及告警功能能够准时触发。 通过以上步骤,你可以构建一个完整的溺水检测监控系统。更多细节和高级功能,可以参考这份《Yolov8实现的溺水检测监控系统GUI界面教程》。教程不仅包括源码ONNX模型文件,还提供了评估指标曲线,帮助开发者了解和优化模型性能。此外,教程中的GUI界面设计部分,将指导你如何创建一个直观且功能完善的用户界面,从而提高监控系统的整体效能和用户体验。 参考资源链接:[Yolov8实现的溺水检测监控系统GUI界面教程](https://wenku.csdn.net/doc/749g64a909?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FL1623863129

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值