【anaconda3安装】
如果anaconda3安装过或者您安装过miniconda3则可以跳过这个安装步骤
首先下载anaconda3,我们打开网址mirrors.tuna.tsinghua.edu.cn/anaconda/archive/,找到自己需要安装版本,我一般使用Anaconda3-2021.05-Windows-x86_64.exe这个版本
你也可以可以选择新一点版本。下载完直接运行打开进行安装(安装过程有点小慢,请耐心等待) ,先点击Next进入选择界面,选择Just Me选项,注意下面没有出现界面可以直接点击Next或者I agree默认即可,下面都是安装时候注意选择界面,其他你按照anaconda3默认选项即可。
安装路径可以选择默认C盘位置,一般不推荐能尽量不装C盘就不装,建议选择非C盘安装,因为anaconda3使用会占用很大空间。而且有时候C盘有权限导致一些无法预料的问题,同时建议不要使用中文和有空格路径,要使用全英文路径。
注意安装anaconda时一定要把环境变量加入windows环境中。要没有勾选,安装完后还要手动加入。
安装好了后,运行开始菜单—>Anaconda3—>Anaconda Prompt
,在终端中键入命令python即可查看自己对应版本
创建虚拟环境
先用Anconda prompt创建一个虚拟环境(解释一下:yolov11是自己创建的虚拟环境(空间)的名字,后面python是限定其内部python版本,不用怎么修改,直接复制粘贴即可。我一般喜欢用python3.8,其他版本都可以)
conda create -n yolov11 python=3.10
输入完按回车,会出现以下情况。
输入y,然后回车;输入y,然后回车。
紧接着输入以下内容,从而将后续环境下载资源所需内容从镜像中获取:
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
【CPU版本安装方法】
接着我们开始安装yolov11模块,首先我们电脑没有nvidia显卡的话可以直接使用下面命令安装
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple ultralytics
上面命令会自动下载所有yolov8所需要模块包括pytorch和opnecv,如果你电脑有nvidia显卡的话可以看GPU版本安装方法,CPU办法安装方法跳过
【GPU版本安装方法】
首先安装gpu版本pytorch,注意pytorch自带有cuda不需要额外安装C++版本cuda。
pip install torch==2.3.0+cu118 torchvision==0.18.0+cu118 -f https://download.pytorch.org/whl/torch_stable.html
如果上面pip安装比较慢可以尝试下面命令
pip install torch==2.3.0+cu118 torchvision==0.18.0+cu118 -f https://mirrors.aliyun.com/pytorch-wheels/cu118
接着我们开始安装yolov11模块
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple ultralytics
这样安装的就是GPU版本yolov11,注意CPU和GPU区别就是torch是不是能用cuda,这个可以用来进行加速推理的图形处理库,nvidia出品的cuda加速所以需要nvidia显卡支持。如果您是AMD则不支持cuda加速,或者说AMD只有一些特殊显卡才支持加速但是不叫cuda加速只能叫amd显卡加速。
至此上面yolov11环境安装完成,如果您需要界面设计一些模块可以直接安装
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyqt5-tools
上面会自动安装pyqt5等依赖,这样我们就可以使用pyqt5界面设计代码或者进行pyqt5开发了,注意pyqt5目前最高只能支持python3.11,比如python3.12和python3.13不支持安装,安装时候尽量避免这2个版本,以免导致无法运行相关pyqt5项目。