概述
CUDA和cuDNN是由NVIDIA提供的两个关键软件库,用于利用NVIDIA GPU进行高性能计算和深度学习加速。
CUDA是一个由NVIDIA开发的并行计算平台和编程模型,用来加速计算密集型任务
cuDNN是一个GPU加速的深度学习库,是许多深度学习框架(如 TensorFlow、PyTorch、MXNet 等)中不可或缺的组件,因为它能够极大地提高深度学习任务的性能。
简单来说,CUDA 是一个通用的GPU编程平台,而cuDNN则是基于CUDA之上的一个专门用于深度学习的优化库。
安装前提:必须有一块支持CUDA的英伟达显卡,如果电脑没有英伟达显卡,那没办法使用哦。
接下来我将手把手教你们安装cuda和cudnn
一、cuda安装
1.查询自己电脑可支持最高cuda版本是多少
在终端输入nvidia-smi命令,查询可支持的最高cuda版本,驱动是向下兼容的,我电脑可支持最高版本的cuda为12.9,所以安装cuda版本小于等于12.9的都可以安装上。(如果想安装的cuda版本不在可支持的cuda版本内,则可以考虑升级显卡驱动,从而实现对cuda高版本的安装,去官网下载你电脑对应显卡的驱动程序:https://www.nvidia.cn/Download/index.aspx?lang=cn)
显卡驱动更新教程如下:注意注意注意:如果你电脑不需要更新显卡驱动,那就跳过显卡驱动更新教程哦
1.查看自己电脑显卡型号
在搜索框输入设备管理器并打开
我的型号如下:
2.复制上面的显卡驱动下载地址
查找自己的显卡型号
进入最新界面:
选择最新一个版本安装即可
3.下载完成直接双击安装
安装超级简单,直接下一步下一步就行,安装完成之后重启电脑,在终端输入nvidia-smi命令,来查看可支持的最高cuda版本
2.cuda安装包下载
下载前需要确定自己需要安装的pytorch版本号是多少,根据下面表格来选择合适版本的cuda和cudnn
cuda与cudnn对应的版本表格:
cuda、CUDAToolkit与pytorch对应的版本
需要注意:30系列显卡的需要cuda11及以上的版本,如果显卡是3070,4070系列显卡,所以需要安装大于等于cuda11的版本,我选择cuda11.3版本的进行下载。如果显卡是50系列显卡需要安装cuda12以上版本。
去官方网站下载cuda安装包,注意要选择离线安装包下载,如下图。如果下载很慢可以尝试gitee.com/FIRC/cuda_cudnn_mirror这个镜像地址。里面包含了cuda和cudnn方便下载
这里以cuda11.3,其他版本下载类似。为例:
3.cuda安装
双击安装包安装
点击展开,取消Visual Studio Integration,如果您需要C++ cuda编程需要和viual studio配和用则不需要取消
安装完成
需要注意:安装完可以不重启电脑,不过推荐重启一下以防环境变量没有更新。注意cuda安装后会自动设置到系统环境变量中无需手动添加。
5.验证cuda是否安装成功
在终端输入nvcc -V命令,输出版本号代表安装成功
二、cudnn安装
1.cudnn安装包下载
下载前需要确定自己需要安装的pytorch版本号是多少,根据下面表格来选择合适版本的cuda和cudnn
cuda与cudnn对应的版本表格:
cuda、CUDAToolkit与pytorch对应的版本
需要注意:看表格找到对应版本的cudnn,我安装cuda版本是11.3,所以需要安装8.2.0或者8.2.1都行,cudnn一般需要自己注册nvidia账号登录才能下载,如果下载很慢或者下载不了可以尝试gitee.com/FIRC/cuda_cudnn_mirror这个镜像地址。里面包含了cuda和cudnn方便下载
找到cudnnv8.2.0,for CUDA 11.x 表示这个cuDNN版本是 CUDA 11.x 版本系列兼容的。CUDA11.x 系列包括了 11.0、11.1、11.2 、11.3等具体版本,x 表示任何小版本号
2.cudnn安装
cuDNN是以压缩包的形式提供的
之后找到路径为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3的文件夹,v11.3是我安装cuda的版本号,你的可能不一样,路径都差不多一样的
需要注意:粘贴后无需重启电脑
3.验证cudnn是否安装成功
cmd进入目录:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\extras\demo_suite
终端输入:deviceQuery.exe
如果结果为pass证明安装成功
至此cuda和cudnn安装完成。