cuda和cudnn的在windows上下载安装教程

概述
CUDA和cuDNN是由NVIDIA提供的两个关键软件库,用于利用NVIDIA GPU进行高性能计算和深度学习加速。
CUDA是一个由NVIDIA开发的并行计算平台和编程模型,用来加速计算密集型任务
cuDNN是一个GPU加速的深度学习库,是许多深度学习框架(如 TensorFlow、PyTorch、MXNet 等)中不可或缺的组件,因为它能够极大地提高深度学习任务的性能。
简单来说,CUDA 是一个通用的GPU编程平台,而cuDNN则是基于CUDA之上的一个专门用于深度学习的优化库。
安装前提:必须有一块支持CUDA的英伟达显卡,如果电脑没有英伟达显卡,那没办法使用哦。
接下来我将手把手教你们安装cuda和cudnn

一、cuda安装
1.查询自己电脑可支持最高cuda版本是多少
在终端输入nvidia-smi命令,查询可支持的最高cuda版本,驱动是向下兼容的,我电脑可支持最高版本的cuda为12.9,所以安装cuda版本小于等于12.9的都可以安装上。(如果想安装的cuda版本不在可支持的cuda版本内,则可以考虑升级显卡驱动,从而实现对cuda高版本的安装,去官网下载你电脑对应显卡的驱动程序:https://www.nvidia.cn/Download/index.aspx?lang=cn)

 显卡驱动更新教程如下:注意注意注意:如果你电脑不需要更新显卡驱动,那就跳过显卡驱动更新教程哦
1.查看自己电脑显卡型号
在搜索框输入设备管理器并打开

 

我的型号如下:

 

2.复制上面的显卡驱动下载地址
查找自己的显卡型号

进入最新界面:

 

 选择最新一个版本安装即可

3.下载完成直接双击安装
安装超级简单,直接下一步下一步就行,安装完成之后重启电脑,在终端输入nvidia-smi命令,来查看可支持的最高cuda版本

2.cuda安装包下载
下载前需要确定自己需要安装的pytorch版本号是多少,根据下面表格来选择合适版本的cuda和cudnn

cuda与cudnn对应的版本表格:

cuda、CUDAToolkit与pytorch对应的版本 


需要注意:30系列显卡的需要cuda11及以上的版本,如果显卡是3070,4070系列显卡,所以需要安装大于等于cuda11的版本,我选择cuda11.3版本的进行下载。如果显卡是50系列显卡需要安装cuda12以上版本。

去官方网站下载cuda安装包,注意要选择离线安装包下载,如下图。如果下载很慢可以尝试gitee.com/FIRC/cuda_cudnn_mirror这个镜像地址。里面包含了cuda和cudnn方便下载

这里以cuda11.3,其他版本下载类似。为例:

 

3.cuda安装

双击安装包安装

 

 

 

点击展开,取消Visual Studio Integration,如果您需要C++ cuda编程需要和viual studio配和用则不需要取消

 

 

 

 

安装完成

需要注意:安装完可以不重启电脑,不过推荐重启一下以防环境变量没有更新。注意cuda安装后会自动设置到系统环境变量中无需手动添加。

5.验证cuda是否安装成功

在终端输入nvcc -V命令,输出版本号代表安装成功

二、cudnn安装

1.cudnn安装包下载

下载前需要确定自己需要安装的pytorch版本号是多少,根据下面表格来选择合适版本的cuda和cudnn

cuda与cudnn对应的版本表格:

cuda、CUDAToolkit与pytorch对应的版本

 

需要注意:看表格找到对应版本的cudnn,我安装cuda版本是11.3,所以需要安装8.2.0或者8.2.1都行,cudnn一般需要自己注册nvidia账号登录才能下载,如果下载很慢或者下载不了可以尝试gitee.com/FIRC/cuda_cudnn_mirror这个镜像地址。里面包含了cuda和cudnn方便下载
找到cudnnv8.2.0,for CUDA 11.x 表示这个cuDNN版本是 CUDA 11.x 版本系列兼容的。CUDA11.x 系列包括了 11.0、11.1、11.2 、11.3等具体版本,x 表示任何小版本号

 

 

2.cudnn安装

cuDNN是以压缩包的形式提供的

 

 

 

 

之后找到路径为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3的文件夹,v11.3是我安装cuda的版本号,你的可能不一样,路径都差不多一样的

 

需要注意:粘贴后无需重启电脑

3.验证cudnn是否安装成功

cmd进入目录:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\extras\demo_suite

 

 

终端输入:deviceQuery.exe

 

如果结果为pass证明安装成功

 

至此cuda和cudnn安装完成。 

 

 

 

 

 

Windows 10上安装CUDAcuDNN需要按照以下步骤进行: 1. 检查你的显卡型号:首先,你需要确定你的显卡型号。CUDAcuDNN的版本是与显卡型号相关联的。 2. 下载CUDA Toolkit:访问NVIDIA官方网站,并在"Downloads"部分找到CUDA Toolkit。选择与你的显卡型号相对应的版本,并下载安装包。 3. 运行CUDA Toolkit安装程序:运行下载的安装程序,并按照向导进行安装。在安装过程中,你可以选择自定义安装选项,以便选择你需要的组件。 4. 安装cuDNNcuDNN是一个用于深度学习的加速库。要安装cuDNN,你需要注册一个NVIDIA开发者帐户,并在官方网站上下载相应版本的cuDNN。下载后,解压缩文件,并将其中的文件复制到CUDA Toolkit的安装目录中。 5. 配置环境变量:为了让系统正确识别CUDAcuDNN,你需要配置环境变量。打开系统属性窗口(按Win + Pause/Break键),点击"高级系统设置",然后点击"环境变量"按钮。在"系统变量"部分,找到名为"Path"的变量,并点击编辑。将CUDA Toolkit的安装目录cuDNN的路径添加到变量值中。 6. 测试安装:重新启动计算机,并打开命令提示符。输入以下命令来测试CUDA是否正确安装: ``` nvcc --version ``` 如果安装成功,将显示CUDA的版本信息。 7. 测试cuDNN:在编写深度学习代码之前,你可以运行一些cuDNN的示例代码来测试其是否正确安装。NVIDIA提供了一些示例代码,你可以在CUDA Toolkit的安装目录中找到它们。 这就是在Windows 10上安装CUDAcuDNN的基本步骤。请确保按照官方文档指南进行操作,以获得最准确的安装说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FL1623863129

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值