Nano与 Orin Nano 对比

核心模组对比

查看 Jetson Nano 技术规格

Jetson Nano
AI Performance472 GFLOPS
GPU128-core NVIDIA Maxwell™ architecture GPU
GPU Max Frequency921MHz
CPUQuad-core ARM® Cortex®-A57 MPCore processor
CPU Max Frequency1.43GHz
DL Accelerator-
DLA Max Frequency-
Vision Accelerator-
Safety Cluster Engine-
Memory4GB 64-bit LPDDR4
25.6GB/s
Storage16GB eMMC 5.1
Video Encode1x 4K30 (H.265)
2x 1080p60 (H.265)
Video Decode1x 4K60 (H.265)
4x 1080p60 (H.265)
CSI CameraUp to 4 cameras
12 lanes MIPI CSI-2
D-PHY 1.1 (up to 18 Gbps)
PCIe*1 x4
(PCIe Gen2)
USB*1x USB 3.0 (5 Gbps)
3x USB 2.0
Networking*1x GbE
Display2 multi-mode DP 1.2/eDP 1.4/HDMI 2.0
1 x2 DSI (1.5Gbps/lane)
Other I/O3x UART, 2x SPI, 2x I2S, 4x I2C, GPIOs
Power5W - 10W
Mechanical69.6mm x 45mm
260-pin SO-DIMM connector

查看 Jetson Orin 技术规格

Jetson AGX Orin 系列Jetson Orin NX 系列Jetson Orin Nano 系列
Jetson AGX Orin 开发者套件Jetson AGX Orin 64GBJetson AGX Orin 工业版Jetson AGX Orin 32GBJetson Orin NX 16GBJetson Orin NX 8GBJetson Orin Nano 开发者套件Jetson Orin Nano 8GBJetson Orin Nano 4GB
AI 性能275 TOPS248 TOPS200 TOPS100 TOPS70 TOPS40 TOPS20 TOPS
GPU搭载 64 个 Tensor Core 的 2048 核 NVIDIA Ampere 架构 GPU搭载 56 个 Tensor Core 的 1792 核 NVIDIA Ampere c GPU搭载 32 个 Tensor Core 的 1024 核 NVIDIA Ampere 架构 GPU搭载 32 个 Tensor Core 的 1024 核 NVIDIA Ampere 架构 GPU搭载 16 个 Tensor Core 的 512 核 NVIDIA Ampere 架构 GPU
GPU 最大频率1.3 GHz1.2 GHz930 MHz918 MHz765 MHz625 MHz
CPU12 核 Arm® Cortex®-A78AE v8.2 64 位 CPU
3MB L2 + 6MB L3
8 核 Arm® Cortex®-A78AE v8.2 64 位 CPU
2MB L2 + 4MB L3
8 核 Arm® Cortex®-A78AE v8.2 64 位 CPU
2MB L2 + 4MB L3
6 核 Arm® Cortex® A78AE v8.2 64 位 CPU
1.5MB L2 + 4MB L3
6 核 Arm® Cortex® A78AE v8.2 64 位 CPU
1.5MB L2 + 4MB L3
CPU 最大频率2.2 GHz2.0 GHz2.2 GHz2 GHz1.5 GHz
DL 加速器2x NVDLA v21x NVDLA v2-
DLA 最大频率1.6 GHz1.4 GHz614 MHz-
视觉加速器1x PVA v2-
安全集群引擎---
显存64GB 256 位 LPDDR5
204.8GB/s
64GB 256 位 LPDDR5 (+ ECC)
204.8GB/s
32GB 256 位 LPDDR5
204.8GB/s
16GB 128 位 LPDDR5
102.4GB/s
8GB 128 位 LPDDR5
102.4GB/s
8GB 128 位 LPDDR5
68 GB/s
4GB 64 位 LPDDR5
34 GB/s
存储64GB eMMC 5.1-
(支持外部 NVMe)
-
(配备 SD 卡插槽,且支持通过 M.2 Key M 连接外部 NVMe)
-
(支持外部 NVMe)
视频编码2x 4K60 (H.265)
4x 4K30 (H.265)
8x 1080p60 (H.265)
16x 1080p30 (H.265)
1x 4K60 (H.265)
3x 4K30 (H.265)
7x 1080p60 (H.265)
15x 1080p30 (H.265)
1x 4K60 (H.265)
3x 4K30 (H.265)
6x 1080p60 (H.265)
12x 1080p30 (H.265)

1080p30,由 1-2 个 CPU 核心提供支持
视频解码1x 8K30 (H.265)
3x 4K60 (H.265)
7x 4K30 (H.265)
11x 1080p60 (H.265)
22x 1080p30 (H.265)
1x 8K30 (H.265)
3x 4K60 (H.265)
7x 4K30 (H.265)
11x 1080p60 (H.265)
23x 1080p30 (H.265)
1x 8K30 (H.265)
2x 4K60 (H.265)
4x 4K30 (H.265)
9x 1080p60 (H.265)
18x 1080p30 (H.265)
1x 4K60 (H.265)
2x 4K30 (H.265)
5x 1080p60 (H.265)
11x 1080p30 (H.265)
CSI 摄像头16 通道 MIPI CSI-2 连接器多达 6 个摄像头(通过虚拟通道支持 16 个)
16 通道 MIPI CSI-2
D-PHY 2.1(高达 40 Gbps)| C-PHY 2.0(高达 164 Gbps)
多达 4 个摄像头(通过虚拟通道支持 8 个***)
8 通道 MIPI CSI-2
D-PHY 2.1(高达 20 Gbps)
2x MIPI CSI-2 22 针摄像头连接器多达 4 个摄像头(通过虚拟通道支持 8 个***)
8 通道 MIPI CSI-2
D-PHY 2.1(高达 20 Gbps)
PCIe*x16 PCIe 插槽,支持 x8 PCIe 4.0
M.2 Key M 插槽,支持 x4 PCIe 4.0
M.2 Key E 插槽,支持 x1 PCIe 4.0
高达 2 x8 + 1 x4 + 2 x1
(PCIe 4.0、根端口和端点)
1 x4 + 3 x1
(PCIe 4.0、根端口和端点)
M.2 Key M 插槽,支持 x4 PCIe 3.0
M.2 Key M 插槽,支持 x2 PCIe 3.0
M.2 Key E 插槽
1 x4 + 3 x1
(PCIe 3.0、根端口和端点)
USB*USB Type-C 连接器:2x USB 3.2 2.0
USB Type-A 连接器:2x USB 3.2 2.0、2x USB 3.2 1.0
USB Micro-B 连接器:USB 2.0
3x USB 3.2 2.0 (10 Gbps)
4x USB 2.0
3x USB 3.2 2.0 (10 Gbps)
3x USB 2.0
USB Type-A 连接器:4x USB 3.2 2.0
适用于 UFP 的 USB Type-C 连接器
3x USB 3.2 2.0 (10 Gbps)
3x USB 2.0
网络*RJ45 连接器,至高可支持 10 GbE1x GbE
1x 10GbE
1x GbE1xGbE 连接器1x GbE
显示器1x DisplayPort 1.4a (+MST) 连接器1x 8K60 多模 DP 1.4a (+MST)/eDP 1.4a/HDMI 2.11x 8K30 多模 DP 1.4a (+MST)/eDP 1.4a/HDMI 2.11x DisplayPort 1.2 (+MST) 连接器1x 4K30 多模 DP 1.2 (+MST)/eDP 1.4/HDMI 1.4**
其他 I/O40 针接头(UART、SPI、I2S、I2C、CAN、PWM、DMIC、GPIO)
12 针自动化接头
10 针音频面板接头
10 针 JTAG 接头
4 针风扇接头
2 针 RTC 电池备份连接器
microSD 插槽
直流电源插座
电源、强制恢复和复位按钮
4x UART、3x SPI、4x I2S、8x I2C、2x CAN、PWM、DMIC 和 DSPK、GPIO3x UART、2x SPI、2x I2S、4x I2C、1x CAN、DMIC 和 DSPK、PWM、GPIO40 针扩展接头(UART、SPI、I2S、I2C、GPIO)
12 针按钮接头
4 针风扇接头
microSD 插槽
直流电源插座
3x UART、2x SPI、2x I2S、4x I2C、1x CAN、DMIC 和 DSPK、PWM、GPIO
功耗15 瓦 - 60 瓦15 瓦 - 75 瓦15 瓦 - 40 瓦10 瓦 – 25 瓦10 瓦 - 20 瓦7 瓦 - 15 瓦7 瓦 - 10 瓦
规格尺寸110 毫米 x 110 毫米 x 71.65 毫米
(高度包括支架、载板、模组和散热解决方案)
100 毫米 x 87 毫米
699 针 Molex Mirror Mezz 连接器
集成导热板
69.6 毫米 x 45 毫米
260 针 SO-DIMM 连接器

100 毫米 x 79 毫米 x 21 毫米
(高度包括支架、载板、模组和散热解决方案)
69.6 毫米 x 45 毫米
260 针 SO-DIMM 连接器

† Jetson Nano 模组和 Jetson Xavier NX 模组是 Jetson Nano 开发者套件的一部分,Jetson Xavier NX 开发者套件配备插槽,支持使用 microSD 卡(而非 eMMC)作为系统存储设备。

* USB 3.2、MGBE 和 PCIe 共享 UPHY 通道。请参阅产品设计指南,了解受支持的 UPHY 配置。
** 有关 DP 1.4a 和 HDMI 2.1 的其他兼容情况的详细信息,请参阅 Jetson Orin Nano 系列产品手册
*** Jetson Orin NX 和 Jetson Orin Nano 的虚拟通道可能会发生变化
如要查看支持功能列表,请参阅新版 NVIDIA Jetson Linux 开发者指南的“Software Features”(软件功能)部分。

参考资料

Jetson Nano Brings the Power of Modern AI to Edge Devices | NVIDIA

利用 Jetson AGX Orin 打造新一代机器人 | NVIDIA

### 如何在Jetson NanoOrin设备上使用torchvision 对于希望在Jetson NanoOrin设备上利用`torchvision`库处理计算机视觉任务的开发者而言,理解这些平台特有的安装配置方法至关重要。 #### 安装PyTorchtorchvision 由于Jetson系列基于ARM架构而非常见的x86架构,官方预编译包可能无法直接适用于此类硬件。因此,在Jetson平台上部署深度学习模型时需特别注意软件环境的选择构建[^2]。针对此情况,推荐采用如下方式来设置开发环境: 1. 使用L4T (Linux for Tegra) SDK提供的Docker镜像作为基础环境,该SDK由NVIDIA专门为Jetson系列产品定制优化; 2. 借助conda虚拟环境管理工具创建独立的工作空间,并通过指定渠道获取适合目标系统的PyTorch版本及其依赖项; 3. 对于最新款式的Jetson Orin设备,则可以直接从NVIDIA NGC Catalog下载经过验证的企业级容器映像,其中已包含了预先配置好的PyTorch以及相关组件。 #### 配置CUDA可见性 为了使PyTorch能够识别并充分利用Jetson内置的GPU资源执行加速计算操作,必须正确设定CUDA_VISIBLE_DEVICES环境变量。这一步骤确保了程序仅访问预期中的图形处理器单元而不干扰其他进程正常运作[^1]。 ```bash export CUDA_VISIBLE_DEVICES=0 ``` #### 加载数据集并通过DataLoader迭代读取样本 借助`torchvision.datasets`模块可以轻松加载多种流行的数据集合;而`torch.utils.data.DataLoader`类则提供了灵活简便的方法用于批量传输图像至神经网络输入层之前完成必要的前处理工作,比如随机裁剪、翻转等增强手段的应用。 ```python from torchvision import datasets, transforms import torch transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) dataset = datasets.ImageFolder(root='/path/to/dataset', transform=transform) dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True) for images, labels in dataloader: pass # 进行训练或其他操作 ``` #### 应用预训练模型进行推理预测 除了自定义设计卷积神经网络结构外,还可以考虑调用`torchvision.models`下众多已经过大规模公开测试集充分训练过的经典模型实例来进行迁移学习或者特征提取任务。这类做法不仅节省了大量的时间成本而且有助于提高最终解决方案的质量水平。 ```python import torchvision.models as models model = models.resnet18(pretrained=True).cuda() model.eval() with torch.no_grad(): outputs = model(images.cuda()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值