scatter_()函数的详细介绍

一、函数介绍
scatter_(input, dim, index, src):将src中数据根据index中的索引按照dim的方向填进input。可以理解成放置元素或者修改元素     

dim:沿着哪个维度进行索引
index:用来 scatter 的元素索引
src:用来 scatter 的源元素,可以是一个标量或一个张量
二、实现原理
 

x = torch.rand(2, 5)
 
#tensor([[0.1940, 0.3340, 0.8184, 0.4269, 0.5945],
#        [0.2078, 0.5978, 0.0074, 0.0943, 0.0266]])
 
torch.zeros(3, 5).scatter_(0, torch.LongTensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]]), x)
 

LongTensor的shape刚好与x的shape对应,也就是LongTensor每个index指定x中一个数据的填充位置。dim=0,表示按行填充,主要理解按行填充。eg. LongTensor中的第1行第0列的值为2,即索引index=2,表示在第2行(从0开始)进行填充,对应到zeros(3, 5)中就是位置(2,0)。所以此处要求zeros(3, 5)的列数要与x列数相同,LongTensor中的index最大值应与zeros(3, 5)行数相一致,示意图如下

最终可以得到填充完整的zeros

tensor([[0.1940, 0.5978, 0.0074, 0.4269, 0.5945],
        [0.0000, 0.3340, 0.0000, 0.0943, 0.0000],
        [0.2078, 0.0000, 0.8184, 0.0000, 0.0266]])

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值