Wandb是啥,怎么用

Wandb是一个用于跟踪和可视化机器学习实验的工具,提供实时指标监控、超参数调整等功能。它记录训练过程中的元数据、指标、事件,并允许保存模型权重。通过示例展示了如何在Python脚本中使用Wandb初始化实验、记录指标和保存模型,便于实验管理和团队协作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Wandb生成的文件夹里面包含了许多与训练相关的文件和数据。其中包括:

  • wandb-metadata.json:记录了wandb项目的元数据,如项目名称,实验id等等。
  • wandb-history.json:存储了训练过程中的所有指标,如loss、accuracy等等。
  • wandb-summary.json:存储了训练过程中的汇总指标,如最好的loss和accuracy等等。
  • wandb-events.jsonl:记录了与实验相关的所有事件,如参数更新、指标记录等等。
  • wandb_run_name.txt:存储了本次运行的名称。

除此之外,还包含了训练代码中写入的所有文件和模型的权重。

Wandb(全称为Weights and Biases)是一个用于跟踪、可视化和协作机器学习项目的工具。它提供了许多功能,包括实时的指标跟踪、超参数调整、模型的可视化等。Wandb能够帮助机器学习工程师更好地管理和监控他们的实验,并从中获得更多的见解和知识。

使用Wandb非常简单,首先需要安装Wandb的Python包,可以通过pip或conda来安装。安装完成后,需要在Python脚本中导入wandb库,登录Wandb,创建一个项目并设置实验。在实验中,可以记录各种指标、超参数、模型权重等,并进行可视化分析。最后,可以将实验的结果保存在Wandb的云端,并与团队成员共享。

下面是一个简单的使用Wandb的示例:

import wandb

# 登录Wandb并创建一个新的实验
wandb.init(project='my-project', entity='my-team', config={
    'learning_rate': 0.001,
    'batch_size': 32,
    'num_epochs': 10
})

# 记录训练指标
for epoch in range(num_epochs):
    # 训练模型...
    train_loss = ...
    train_accuracy = ...

    # 记录指标
    wandb.log({'train_loss': train_loss, 'train_accuracy': train_accuracy})

# 保存模型
wandb.save('model.pth')

在这个示例中,我们首先通过调用wandb.init()来初始化Wandb实验,设置了项目名称和团队名称。我们还通过config参数设置了一些超参数。接下来,在训练循环中,我们记录了训练损失和准确率,然后通过调用wandb.log()来记录这些指标。最后,我们通过wandb.save()保存了模型。

在Wandb的网站上,我们可以看到实验的结果,并进行可视化分析。我们还可以在实验中添加注释、标记和讨论,与团队成员进行协作。

### 集成 Weights & Biases (Wandb) 到 UnitreeRLGym 为了在 UnitreeRLGym 项目中集成 Wandb 来实现高效的实验跟踪和可视化,可以遵循以下方法: #### 安装依赖包 首先,在 Python 环境下安装 `wandb` 库。这一步骤确保了后续代码能够正常调用 Wandb 的功能。 ```bash pip install wandb ``` #### 初始化 Wandb 实验环境 在启动任何训练之前,初始化一个新的 Wandb 记录会话是非常重要的。这段代码通常放置于脚本的最开始部分,以便在整个运行期间都能访问到该实例[^1]。 ```python import wandb # 启动新的Wandb运行并配置基本设置 run = wandb.init( project='unitree_rlgym_project', # 设置项目的名称 name='experiment_01' # 当前实验的具体名字 ) ``` #### 跟踪超参数与模型架构 对于强化学习算法而言,记录使用的具体参数以及网络结构有助于后期的结果对比分析。因此建议将这些信息作为元数据保存下来。 ```python config = run.config # 获取当前运行的配置对象 config.learning_rate = 0.001 # 学习率等重要参数可以直接赋值给 config 属性 config.model_architecture = 'DQN' ... ``` #### 日志记录损失函数和其他性能度量 随着训练迭代次数增加,定期向 Wandb 发送更新日志,包括但不限于奖励得分、平均回报、每轮次的最大最小Q值变化情况等等。这样做的好处是可以实时监控进度,并且便于之后绘制趋势曲线图进行评估。 ```python for epoch in range(num_epochs): ... # 假设这里已经完成了一轮完整的episode模拟 episode_reward = ... # 单个回合总收益 # 将关键指标上传至云端存储供查看 wandb.log({ 'epoch': epoch, 'reward_per_episode': episode_reward, 'avg_loss': avg_loss_over_epoch, 'max_q_value': max_q_values[-1], 'min_q_value': min_q_values[-1] }) ``` #### 结束实验追踪 当整个训练流程结束时,记得关闭本次运行连接以释放资源。 ```python run.finish() ``` 通过上述方式可以在 UnitreeRLGym 中无缝接入 Wandb 工具来进行全面而细致化的研究工作流管理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小帆别吃糖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值