推荐系统|2.4 矩阵分解的目的和效果

矩阵分解

矩阵分解的必要性和方法

在这里插入图片描述在这里插入图片描述
比如原本是一个 m × n m\times n m×n规模大小的矩阵,经过分解后可得到两个矩阵一个是 m × k m\times k m×k,另外一个是 k × n k\times n k×n,于是总占用空间为 ( m + n ) × k (m+n)\times k (m+n)×k

在这里插入图片描述
注意,分解是以一种近似的情况来进行分解。
由于分解完,再复原回去,其实也可以将原本空白的位置填上数据,进而也达到了预测的效果。
而具体的k可以用来指歌曲的种类。(k取决于分类的角度)
在这里插入图片描述
从而,矩阵乘积的运算过程相当于是用户对某一首歌曲,从民谣、儿歌和草原风三个方面进行考量。

隐向量

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值