Verilog学习日志(2021.7.14)

这篇博客探讨了使用Verilog进行逻辑设计,包括通过KarnaughMap简化3-4变量逻辑表达式并转换为电路。还讨论了全加器的实现以及在限制资源(如仅使用2选1MUX)的情况下设计电路。此外,提到了需要复习的数电基础知识,如BCD码、补码运算和触发器。最后,作者反思了在解决特定问题时选择不同表示方法的优缺点。
摘要由CSDN通过智能技术生成

2021.7.14

1.先把69题有符号数运算放一边,开始Karnaugh Map的小单元。

(72)很简单,简化一个3变量的k-map,设计成电路。

(73)简化一个4变量的k-map,设计成电路。

//out = b’c’ + a’bc’d’ + a’b’cd’ + a’bc + acd

(74)简化一个带无关项的4变量k-map,设计成电路。

//out = a’b’c + a;

(75)一个4变量的k-map,设计成电路。

//out = a’bc’d’ + ab’c’d’ + a’b’c’d + abc’d + a’bcd + ab’cd + a’b’cd’ + abcd’;

(76)通过一段描述,要我们画出卡诺图,然后写出逻辑表示式再通过SOP和POS式设计出电路。

//out_sop = a’b’cd’ + cd;

//out_pos = c ( a + b’ + c’ + d ) ( a’ + c’ + d );

(77)通过卡诺图设计电路。

//out = x3x1’ + x4x2x1;

(78)通过卡诺图,用SOP和POS式设计电路。

//out_sop = x4’x3’x2’ + x3x1’ + x4x3x2x1 + x4’x3x2’x1;

//out_pos = ( x4x3’ + x4’x3’x2 + x4x3x2’x1 + x4’x3x2x1 )’

            = ( x4’ + x3 ) ( x4 + x3 + x2’ ) ( x4’ + x3’ + x2 + x1’ ) ( x4 + x3’ + x2’ + x1’ );

(79)只允许用一个4选1MUX和若干2选1MUX设计一个电路。

//f = a’b’c + a’b’c’d + ab’d’ + abcd

  = a’b’ ( cd + cd’ + c’d ) + a’b ( 1’b0 ) + ab’ ( cd’ + c’d’ ) + ab ( cd );

//我是直接使用以上表示方法,以最小项之和的形式进行描述。

//而答案是使用二元条件符,是可以直接看真值表表达出来的,优点是思路足够简单,缺点是还是用编程的思想考虑,然后语言的抽象度更高,所以综合所需要用到的资源更多?

//对不起,是我没有审题,只能使用2选1MUX来进行解题,如果是要用2选1MUX的话,第一反应的确应该是使用二元条件操作符。

2.回头看看运算电路里面的后几题。

(70)100位二进制全加器。直接使用行为级运算符就可以轻松完成。

//把sum和cout通过位合并符直接合并成一个向量{ cout, sum },然后就可以直接使用行为级加法运算符(因为前者是101位,所以加完溢出位直接补充到cout中了)

3.我需要补的几个知识点如下:

①BCD码相关

②涉及到补码的有符号数运算相关内容

③generate语句

④function等等其他题库内没出现过的Verilog知识

⑤把数电里面触发器和时序逻辑电路整个过一遍吧,昨天睡前回想了一下,好像都忘得差不多了

4.这两天可以稍微搁置一下刷题的东西,放慢节奏然后把之前的题目看一看,查漏补缺一些知识点然后再继续做时序逻辑相关的题目。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值