机器学习之权重、偏置自动调参

本文通过实例探讨神经网络中权重和偏置的自动调参过程。作者使用二维特征值输入、一维输出的简单神经网络模拟,通过Python代码展示了如何训练网络,并解释了如何利用样本数据自动更新权重和偏置,最终实现预测A是否会因特定特征而生气的功能。
摘要由CSDN通过智能技术生成

背景

这段时间在学习神经网络相关的内容,神经网络的算法里面只要给定它特征值丢进去,算法就会自身跟新权重和误差(偏置)。其实学习机器学习内容的时候,我对这些算法过程是理解的,但是我对细节是模糊的。

所以,我需要写点代码,在电脑里面跑一下,自己才能领会到算法的真正含义。


开始讲解

那么,下面我就列举一个输入为二维的特征值,输出为一维的简单的神经网络模拟。
例如:A有两个特征值,一个特征值是他有棍子,另一个特征值是他会躁动。现在我们有10组样本,每个样本的特征值对应着A是否会和你打架的真实值。

x = [(1,1),(0.9,1.8),(2.3,1),(2.8,1.5),(1.3,4),(6,4.6),(4.2,5.1),(5.1,6.6),(6.2,5.6),(4.6,5.2)]
y = [-1,-1,-1,-1,1,1,1,1,1,1]

例如上面,x就是特征值,比如第一个样本(1,1)就是A有棍子的概率为1,A会躁动的概率为1,此时对应y真实值是-1,那么表示A不会生气。再比如,最后一个样本(4.6,5.2),就是A有棍子的概率为4.6,A会躁动的概率为5.2,此时A对应的真实值为1,那么表示此时A会生气。

上面10组样本就是真实情况下发生的,可以理解我10次惹了A,其中4次A没有生气,6次A生气了。

那么,我现在想弄一个算法出来,当下一次我再惹A时候,我输入A有棍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值