pytorch每日一学1(torch.is_tensor(obj))

1. 现在开始每天学习一个pytorch的方法

  这个对还没有学习pytorch的同学来说可能没有那么友好,但是对稍微入门了一些pytorch的人来说可能就比较需要,一天看一个方法,也不需要花太多的时间,希望自己能坚持下去。
pytorch的入门教程以后有时间的话会不定期更新。

1. 第一个方法:

torch.is_tensor(obj)
  • 此方法很直观,如果obj是tensor的话返回true,否则返回false。

与此方法对应的另一个方法是:

isinstance(obj, Tensor)
  • 注意,torch.is_tensor(obj)是torch的一个方法,而isinstance(obj, Tensor)是python自带的一个方法,这两个是等价的。当然isinstance(obj, type)这个方法可以检查任何类型,如果检查出obj是type类型返回true,否则返回false。
  • 根据官网的说法,isinstance(obj, Tensor)这种方法更适合于静态检查(例如更适合mypy等静态检查工具进行检查)并且也更加直观(这个倒是我觉得两个方法都挺直观的),所以更推荐使用isinstance(obj, Tensor)这种方法。
<< 这段代码的作用是在PyTorch中创建个形状为 `(bs, self.bev_h, self.bev_w)` 的张量,并将其初始化为全零值(`torch.zeros`),同时将该张量移动到与 `bev_queries` 张量相同的设备上 (`device=bev_queries.device`),并转换为其指定的数据类型 (`dtype`)。 ### 回答问题 #### 实现方式及详细步骤: 1. **创建零矩阵**: 使用 `torch.zeros` 函数生成个大小为 `(bs, self.bev_h, self.bev_w)` 的三维张量,初始值全部设置为0。 2. **指定设备**: 参数 `device=bev_queries.device` 表示新创建的张量会位于和 `bev_queries` 相同的计算设备上(例如 GPU 或 CPU)。 3. **数据类型的转换**: `.to(dtype)` 将刚刚创建好的张量从默认的浮点数类型(通常是 `float32`)转换成目标类型 `dtype` 指定的类型(如 `float64`, `int8` 等)。 ```python import torch # 示例参数 bs = 2 # batch size bev_h = 5 # BEV height bev_w = 7 # BEV width dtype = torch.float32 # 数据类型设定为 float32 class ExampleClass: def __init__(self): self.bev_h = bev_h self.bev_w = bev_w def create_bev_mask(self, bs, dtype, device='cpu'): return torch.zeros((bs, self.bev_h, self.bev_w), device=device).to(dtype) # 创建实例 obj = ExampleClass() # 假设我们有个查询张量 bev_queries = torch.randn(3, 4) # 随机张量作为例子 # 根据给定信息构建 mask bev_mask = obj.create_bev_mask(bs, dtype=dtype, device=bev_queries.device) print(bev_mask.shape) # 输出 (2, 5, 7),即 (batch_size, height, width) ``` --- ### 给出解释 - 这段代码的核心在于使用 PyTorch 提供的功能来操作张量。`torch.zeros()` 是种非常常见的用于初始化的操作,特别是在深度习模型中的特征图、掩码等场景下经常用到。 - 在实际应用中,比如自动驾驶或机器人导航领域,“BEV”代表鸟瞰视图(Bird's Eye View),这种视角下的特征处理通常需要用到二维网格状结构表示的空间位置关系,因此这里可能涉及到对图像进行某种形式上的变换或者是遮罩操作。 - 此外需要注意的是,在大规模训练过程中确保所有涉及运算的 Tensor 必须处于同 Device 上才能正常运行;此外选择合适的 Dtype 不仅影响精度也会影响内存占用情况以及计算效率。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值