【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch

U-Net是一种用于生物医学图像分割的卷积神经网络架构,最初由Olaf Ronneberger等人于2015年提出。

  • 论文: U-Net: Convolutional Networks for Biomedical Image Segmentation
  • 作者: Olaf Ronneberger, Philipp Fischer, Thomas Brox
  • 会议: MICCAI 2015
  • 数据集:使用了ISBI挑战赛中的神经元结构分割和细胞追踪数据集。主要用于评估生物医学图像分割算法的性能。
  • 开源代码:原论文并未提供官方的开源代码,但社区中有多个实现版本可供参考。

一、项目介绍

社区版本:milesial/Pytorch-UNet 是一个基于 PyTorch 的 U-Net 实现项目,专注于语义分割任务。
项目名称:U-Net: Semantic segmentation with PyTorch
主要目的:针对 Kaggle 的Carvana 图像蒙版挑战赛(来自高清图像)在 PyTorch 中定制实现的U-Net 。

Carvana 图像蒙版挑战赛:自动识别图像中的汽车边界

  • 概述:由美国二手车零售平台 Carvana 于 2017 年在 Kaggle 上举办的竞赛,最初为提升车辆展示效果而开发,旨在通过前景分割技术从高分辨率图像中提取汽车主体,去除背景。这一挑战推动了高分辨率图像分割技术在自动驾驶和车辆识别等领域的发展。
  • 数据集(需注册后下载):包含 5088 张汽车照片及其对应的掩码(mask),用于训练和评估图像分割模型,特别是汽车前景与背景的分离。
  • 代码(多人提交了Notebook格式的开源代码,部分提供了预训练模型
  • 模型(未开源
  • 排行榜(根据Dice得分,最高Dice=0.99733

在这里插入图片描述

二、项目实战

2.1、环境搭建

2.1.1、下载源码

官方下载地址:milesial/Pytorch-UNet

2.1.2、下载预训练模型

官方提供了两个预训练模型:Pretrained model

  1. unet_carvana_scale0.5_epoch2.pth
    • 模型说明: 这是在 Carvana 数据集上训练的 U-Net 模型,缩放因子为 0.5。这意味着输入图像的尺寸在训练时被缩小了一半,有助于降低计算复杂性和内存使用。
    • 应用场景: 适合于需要快速推理或资源受限的环境,例如移动设备或边缘计算设备。
    • 训练细节: 训练通常包括数据增强、交叉熵损失计算和优化,旨在提高模型的分割精度。
  2. unet_carvana_scale1.0_epoch2.pth
    • 模型说明: 这是相同模型在 Carvana 数据集上的训练,但缩放因子为 1.0,表示输入图像的尺寸与原始图像一致。
    • 应用场景: 适合于对图像分割精度要求较高的任务,因为使用原始尺寸可以保留更多的细节信息。
    • 训练细节: 该模型可能会有更多的计算需求和内存消耗,但在准确性上通常优于缩放因子为 0.5 的模型。

2.1.3、下载训练集

如果需要自训练模型,可以下载官方数据集:carvana-image-masking-challenge:dataset

官网:https://www.kaggle.com/c/carvana-image-masking-challenge/data
需要注册才能下载

网盘:https://pan.baidu.com/s/1EHSt0ANwSI8x67j_h8ZYjw
提取码:f2c4

2.2、环境配置

Note : Use Python 3.6 or newer

conda install python=3.6
pip install -r requirements.txt

2.3、代码优化 + 架构优化

该项目具有一定的影响力,由于项目需要,尝试调用其预训练模型。

  • 问题:在项目复现过程中,发现 predict.py 无法运行且有部分BUG
  • 方案:优化了以下内容,可以正常执行。
    • (1)get_args():指定路径(预训练模型、输入图像、输出图像)
    • (2)get_output_filenames()
    • (3)img = Image.open(filename)替换为img = Image.open(filename).convert('RGB')

备注:已提供优化后的 predict.py 文件。

由于需要指定路径,且为了规划范,在开源代码的 data 文件夹下,添加了以下内容:
(1)checkpoints:保存预训练模型
(2)predict_data - input:保存待预测图像
(3)predict_data - output:保存预测后图像

在这里插入图片描述

参考文献:基于预训练模型的Unet【Pytorch版】

2.4、模型预测:predict.py

  • 测试结果:使用官方提供的预训练模型,测试效果极差(没有过度探讨内部细节,但核查代码后确定 UNet 模型没有问题)
  • 原因分析:提供的预训练模型中有 epoch2 字样,若为真,则模型确实不可能收敛(感兴趣可以尝试自训练,并增加epoch训练周期)

在这里插入图片描述

import argparse
import logging
import os

import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms

from utils.data_loading import BasicDataset
from unet import UNet
from utils.utils import plot_img_and_mask

def predict_img(net,
                full_img,
                device,
                scale_factor=1,
                out_threshold=0.5):
    net.eval()
    img = torch.from_numpy(BasicDataset.preprocess(None, full_img, scale_factor, is_mask=False))
    img = img.unsqueeze(0)
    img = img.to(device=device, dtype=torch.float32)

    with torch.no_grad():
        output = net(img).cpu()
        output = F.interpolate(output, (full_img.size[1], full_img.size[0]), mode='bilinear')
        if net.n_classes > 1:
            mask = output.argmax(dim=1)
        else:
            mask = torch.sigmoid(output) > out_threshold

    return mask[0].long().squeeze().numpy()


def get_args():
    parser = argparse.ArgumentParser(description='Predict masks from input images')
    parser.add_argument('--model', '-m', type=str, default='./data/checkpoints/unet_carvana_scale1.0_epoch2.pth', help='Specify the file in which the model is stored')
    parser.add_argument('--input', '-i', type=str, default='./data/predict_data/input/t1.png', help='Filenames of input images')
    parser.add_argument('--output', '-o', type=str, default='./data/predict_data/output/t1.png', help='Filenames of output images')
    parser.add_argument('--viz', '-v', action='store_true', help='Visualize the images as they are processed')
    parser.add_argument('--no-save', '-n', action='store_true', help='Do not save the output masks')
    parser.add_argument('--mask-threshold', '-t', type=float, default=0.5, help='Minimum probability value to consider a mask pixel white')
    parser.add_argument('--scale', '-s', type=float, default=0.5, help='Scale factor for the input images')
    parser.add_argument('--bilinear', action='store_true', default=False, help='Use bilinear upsampling')
    parser.add_argument('--classes', '-c', type=int, default=2, help='Number of classes')
    
    return parser.parse_args()


def get_output_filenames(args):
    def _generate_name(fn):
        return f'{os.path.splitext(fn)[0]}_OUT.png'

    # return args.output or list(map(_generate_name, args.input))
    return [args.output] if args.output else list(map(_generate_name, args.input))

def mask_to_image(mask: np.ndarray, mask_values):
    if isinstance(mask_values[0], list):
        out = np.zeros((mask.shape[-2], mask.shape[-1], len(mask_values[0])), dtype=np.uint8)
    elif mask_values == [0, 1]:
        out = np.zeros((mask.shape[-2], mask.shape[-1]), dtype=bool)
    else:
        out = np.zeros((mask.shape[-2], mask.shape[-1]), dtype=np.uint8)

    if mask.ndim == 3:
        mask = np.argmax(mask, axis=0)

    for i, v in enumerate(mask_values):
        out[mask == i] = v

    return Image.fromarray(out)


if __name__ == '__main__':
    args = get_args()
    logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')

    in_files = [args.input] if isinstance(args.input, str) else args.input
    out_files = get_output_filenames(args)

    net = UNet(n_channels=3, n_classes=args.classes, bilinear=args.bilinear)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    logging.info(f'Loading model {args.model}')
    logging.info(f'Using device {device}')

    net.to(device=device)
    state_dict = torch.load(args.model, map_location=device)
    mask_values = state_dict.pop('mask_values', [0, 1])
    net.load_state_dict(state_dict)

    logging.info('Model loaded!')

    for i, filename in enumerate(in_files):
        logging.info(f'Predicting image {filename} ...')
        # img = Image.open(filename)
        img = Image.open(filename).convert('RGB')

        mask = predict_img(net=net,
                           full_img=img,
                           scale_factor=args.scale,
                           out_threshold=args.mask_threshold,
                           device=device)

        if not args.no_save:
            out_filename = out_files[i]
            result = mask_to_image(mask, mask_values)
            result.save(out_filename)
            logging.info(f'Mask saved to {out_filename}')

        if args.viz:
            logging.info(f'Visualizing results for image {filename}, close to continue...')
            plot_img_and_mask(img, mask)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖墩会武术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值