二次型定义
设有 n n n个变量 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn的二次齐次函数:
f ( x 1 , x 2 , ⋯ , x n ) = a 11 x 1 2 + a 12 x 2 2 + ⋯ + a n n x n 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + 2 a n − 1 , n x n − 1 x n f(x_1,x_2,\cdots,x_n)=a_{11}x_1^2+a_{12}x_2^2+\cdots+a_{nn}x_n^2+\\ 2a_{12}x_1x_2+2a_{13}x_1x_3+2a_{n-1,n}x_{n-1}x_n f(x1,x2,⋯,xn)=a11x12+a12x22+⋯+annxn2+2a12x1x2+2a13x1x3+2an−1,nxn−1xn
称为二次型。
若 f = k 1 y 1 2 + k 2 y 2 2 + ⋯ + k n y n 2 f=k_1y_1^2+k_2y_2^2+\cdots+k_ny_n^2 f=k1y12+k2y22+⋯+knyn2,只含平方项的二次型,称为二次型的标准形。
若系数 k 1 , k 2 , ⋯ , k n k_1,k_2,\cdots,k_n k1,k2,⋯,kn只在 − 1 , 0 , 1 -1,0,1 −1,0,1三个数中取值,如:
f = y 1 2 + ⋯ + y p 2 − y p + 1 2 − ⋯ − y r 2 f=y_1^2+\cdots+y_p^2-y_{p+1}^2-\cdots-y_r^2 f=y12+⋯+yp2−yp+12−⋯−yr2
称为二次型的规范形。
二次型可以用矩阵记作:
f = X T A X f=X^TAX f=XTAX
其中 A A A是对称矩阵,称为二次型 f f f的矩阵, A A A的秩称为二次型 f f f的秩。
习题
1、二次型 f = x 2 − 3 z 2 − 4 x y + y z f=x^2-3z^2-4xy+yz f=x2−3z2−4xy+yz用矩阵表示。
解:
f = ( x , y , z ) [ 1 − 2 0 − 2 0 1 2 0 1 2 − 3 ] ( x y z ) f=(x,y,z)\left[ \begin{matrix} 1 & -2&0\\ -2&0&\frac{1}{2}\\ 0&\frac{1}{2}&-3 \end{matrix} \right] \left( \begin{matrix} x\\ y\\ z \end{matrix} \right) f=(x,y,z) 1−20−2021021−3 xyz
合同
设 A , B A,B A,B为 n n n阶矩阵,若有可逆矩阵 C C C,使 B = C T A C B=C^TAC B=CTAC,则 A A A与 B B B合同。
若 A A A为对称矩阵,则 B = C T A C B=C^TAC B=CTAC也为对称矩阵,且 R ( A ) = R ( B ) R(A)=R(B) R(A)=R(B)。
习题
1、下列矩阵中,与矩阵:
A = [ 1 2 0 2 1 0 0 0 1 ] A=\left[ \begin{matrix} 1 & 2&0\\ 2&1&0\\ 0&0&1 \end{matrix} \right] A= 120210001
合同的是(B)。
(A) [ 1 0 0 0 1 0 0 0 1 ] \left[ \begin{matrix} 1 & 0&0\\ 0&1&0\\ 0&0&1 \end{matrix} \right] 100010001 (B) [ 1 0 0 0 1 0 0 0 − 1 ] \left[ \begin{matrix} 1 & 0&0\\ 0&1&0\\ 0&0&-1 \end{matrix} \right] 10001000−1 C) [ 1 0 0 0 − 1 0 0 0 − 1 ] \left[ \begin{matrix} 1 & 0&0\\ 0&-1&0\\ 0&0&-1 \end{matrix} \right] 1000−1000−1 (D) [ − 1 0 0 0 − 1 0 0 0 − 1 ] \left[ \begin{matrix} -1 & 0&0\\ 0&-1&0\\ 0&0&-1 \end{matrix} \right] −1000−1000−1
解:
∣ A − λ E ∣ = ∣ 1 − λ 2 0 2 1 − λ 0 0 0 1 − λ ∣ = ( 1 − λ ) ∣ 1 − λ 2 2 1 − λ ∣ = ( 1 − λ ) ( λ − 3 ) ( λ + 1 ) = 0 ⇒ λ 1 = 1 , λ 2 = 3 , λ 3 = − 1 ⇒ 正惯性指数为2 ⇒ 负惯性指数为1 |A-\lambda E|=\left| \begin{matrix} 1 -\lambda& 2&0\\ 2&1-\lambda&0\\ 0&0&1-\lambda \end{matrix} \right|=(1-\lambda)\left| \begin{matrix} 1-\lambda & 2\\ 2&1-\lambda \end{matrix} \right|\\ =(1-\lambda)(\lambda-3)(\lambda+1)=0\\ \Rightarrow \lambda_1=1,\lambda_2=3,\lambda_3=-1\\ \Rightarrow \text{正惯性指数为2}\\ \Rightarrow \text{负惯性指数为1}\\ ∣A−λE∣= 1−λ2021−λ0001−λ =(1−λ) 1−λ221−λ =(1−λ)(λ−3)(λ+1)=0⇒λ1=1,λ2=3,λ3=−1⇒正惯性指数为2⇒负惯性指数为1
性质
任给二次型 f = ∑ i = 1 n a i j x i x j ( a i j = a j i ) f=\sum_{i=1}^n a_{ij}x_ix_j(a_{ij}=a_{ji}) f=∑i=1naijxixj(aij=aji),总有正交变换 x = P y x=Py x=Py,使 f f f化为标准形:
f = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 f=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2 f=λ1y12+λ2y22+⋯+λnyn2
其中 λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,⋯,λn是 f f f的矩阵 A = ( a i j ) A=(a_{ij}) A=(aij)的特征值。
任给 n n n元二次型 f ( x ) = x T A x ( A T = A ) f(x)=x^TAx(A^T=A) f(x)=xTAx(AT=A),总有可逆变换 x = C z x=Cz x=Cz,使 f ( z ) f(z) f(z)为规范形。
二次型的标准形中正系数的个数称为二次型的正惯性指数;
二次型的标准形中负系数的个数称为二次型的负惯性指数。
设二次型
f
(
x
)
=
x
T
A
x
f(x)=x^TAx
f(x)=xTAx,若对
∀
x
≠
0
\forall x \neq 0
∀x=0,有
f
(
x
)
>
0
,
(
f
(
0
)
=
0
)
f(x)>0,(f(0)=0)
f(x)>0,(f(0)=0),则
f
f
f为正定二次型,称
A
A
A为正定的;
设二次型
f
(
x
)
=
x
T
A
x
f(x)=x^TAx
f(x)=xTAx,若对
∀
x
≠
0
\forall x \neq 0
∀x=0,有
f
(
x
)
<
0
,
(
f
(
0
)
=
0
)
f(x)<0,(f(0)=0)
f(x)<0,(f(0)=0),则
f
f
f为负定二次型,称
A
A
A为负定的。
n n n元二次型 f = x T A x f=x^TAx f=xTAx为正定的充要条件是:
- 它的标准形的 n n n个系数全为正;
- 它的规范形的 n n n个系数全为1;
- 它的正惯性指数为 n n n。
对称矩阵 A A A为正定的充要条件:
- A A A的特征值全为正。
习题
1、判定二次型 f = − 5 x 2 − 6 y 2 − 4 z 2 + 4 x y + 4 x z f=-5x^2-6y^2-4z^2+4xy+4xz f=−5x2−6y2−4z2+4xy+4xz的正定性。
解:
A = [ − 5 2 2 2 − 6 0 2 0 − 4 ] ⇒ λ 1 + λ 2 + λ 3 = − 15 ⇒ λ i 不全 > 0 ⇒ A 为负定 A=\left[ \begin{matrix} -5 & 2&2\\ 2&-6&0\\ 2&0&-4 \end{matrix} \right]\\ \Rightarrow \lambda_1+\lambda_2+\lambda_3=-15\\ \Rightarrow \lambda_i\text{不全}>0\\ \Rightarrow A\text{为负定} A= −5222−6020−4 ⇒λ1+λ2+λ3=−15⇒λi不全>0⇒A为负定
2、求一个正交变换 x = P y x=Py x=Py,把二次型:
f = − 2 x 1 x 2 + 2 x 1 x 3 + 2 x 2 x 3 f=-2x_1x_2+2x_1x_3+2x_2x_3 f=−2x1x2+2x1x3+2x2x3
化为标准形。(对角化)
解:
A = [ 0 − 1 1 − 1 0 1 1 1 0 ] ∣ A − λ E ∣ = ∣ − λ − 1 1 − 1 − λ 1 1 1 − λ ∣ = ∣ 0 λ − 1 1 − λ 2 0 1 − λ 1 − λ 1 1 − λ ∣ = ∣ λ − 1 1 − λ 2 1 − λ 1 − λ ∣ = ( λ − 1 ) ( λ + 2 ) ( 1 − λ ) = 0 ⇒ λ 1 = λ 2 = 1 , λ 3 = − 2 A=\left[ \begin{matrix} 0 & -1&1\\ -1&0&1\\ 1&1&0 \end{matrix} \right]\\ |A-\lambda E|=\left| \begin{matrix} -\lambda& -1&1\\ -1&-\lambda&1\\ 1&1&-\lambda \end{matrix} \right|=\left| \begin{matrix} 0& \lambda-1&1-\lambda^2\\ 0&1-\lambda&1-\lambda\\ 1&1&-\lambda \end{matrix} \right|\\ =\left| \begin{matrix} \lambda-1&1-\lambda^2\\ 1-\lambda&1-\lambda\\ \end{matrix} \right|=(\lambda-1)(\lambda+2)(1-\lambda)=0\\ \Rightarrow \lambda_1=\lambda_2=1,\lambda_3=-2 A= 0−11−101110 ∣A−λE∣= −λ−11−1−λ111−λ = 001λ−11−λ11−λ21−λ−λ = λ−11−λ1−λ21−λ =(λ−1)(λ+2)(1−λ)=0⇒λ1=λ2=1,λ3=−2
(1) λ 1 = λ 2 = 1 \lambda_1=\lambda_2=1 λ1=λ2=1时,
[ − 1 − 1 1 − 1 − 1 1 1 1 − 1 ] → [ 1 1 − 1 0 0 0 0 0 0 ] ⇒ ξ 1 = ( − 1 1 0 ) , ξ 2 = ( 1 0 1 ) \left[ \begin{matrix} -1 & -1&1\\ -1&-1&1\\ 1&1&-1 \end{matrix} \right]\to \left[ \begin{matrix} 1 & 1&-1\\ 0&0&0\\ 0&0&0 \end{matrix} \right]\\ \Rightarrow \xi_1=\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right),\xi_2=\left( \begin{matrix} 1\\ 0\\ 1 \end{matrix} \right) −1−11−1−1111−1 → 100100−100 ⇒ξ1= −110 ,ξ2= 101
将 ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2正交化,
η 1 = ( − 1 1 0 ) η 2 = ξ 2 − [ ξ 1 , ξ 2 ] [ ξ 1 , ξ 1 ] ⋅ ξ 1 = ( 1 0 1 ) − − 1 1 + 1 ( − 1 1 0 ) = 1 2 ( 1 1 2 ) \eta_1=\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right)\\ \eta_2=\xi_2-\frac{[\xi_1,\xi_2]}{[\xi_1,\xi_1]}\cdot \xi_1=\left( \begin{matrix} 1\\ 0\\ 1 \end{matrix} \right)-\frac{-1}{1+1}\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right)=\frac{1}{2}\left( \begin{matrix} 1\\ 1\\ 2 \end{matrix} \right) η1= −110 η2=ξ2−[ξ1,ξ1][ξ1,ξ2]⋅ξ1= 101 −1+1−1 −110 =21 112
将 η 1 , η 2 \eta_1,\eta_2 η1,η2单位化。
⇒ p 1 = 1 2 ( − 1 1 0 ) , p 2 = 1 6 ( 1 1 2 ) \Rightarrow p_1=\frac{1}{\sqrt{2}}\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right),p_2=\frac{1}{\sqrt{6}}\left( \begin{matrix} 1\\ 1\\ 2 \end{matrix} \right) ⇒p1=21 −110 ,p2=61 112
(2) λ 3 = − 2 \lambda_3=-2 λ3=−2时,
[ 2 − 1 1 − 1 2 1 1 1 2 ] → [ 1 1 2 0 3 3 0 − 3 − 3 ] → [ 1 1 2 0 1 1 0 0 0 ] → [ 1 0 1 0 1 1 0 0 0 ] ⇒ ξ 3 = ( − 1 − 1 1 ) \left[ \begin{matrix} 2 & -1&1\\ -1&2&1\\ 1&1&2 \end{matrix} \right]\to \left[ \begin{matrix} 1&1&2\\ 0&3&3\\ 0&-3&-3 \end{matrix} \right]\to \left[ \begin{matrix} 1&1&2\\ 0&1&1\\ 0&0&0 \end{matrix} \right]\\ \to \left[ \begin{matrix} 1&0&1\\ 0&1&1\\ 0&0&0 \end{matrix} \right] \Rightarrow \xi_3=\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right) 2−11−121112 → 10013−323−3 → 100110210 → 100010110 ⇒ξ3= −1−11
将 ξ 3 \xi_3 ξ3单位化,
p 3 = 1 3 ( − 1 − 1 1 ) ⇒ P 为 P = ( p 1 , p 2 , p 3 ) = [ − 1 2 1 6 − 1 3 1 2 1 6 − 1 3 0 2 6 1 3 ] 使 P − 1 A P = [ 1 0 0 0 1 0 0 0 − 2 ] p_3=\frac{1}{\sqrt{3}}\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right)\\ \Rightarrow P\text{为}\\ P=(p_1,p_2,p_3)=\left[ \begin{matrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} &-\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} &\frac{1}{\sqrt{6}} &-\frac{1}{\sqrt{3}} \\ 0&\frac{2}{\sqrt{6}} &\frac{1}{\sqrt{3}} \end{matrix} \right]\text{使}P^{-1}AP=\left[ \begin{matrix} 1&0&0\\ 0&1&0\\ 0&0&-2 \end{matrix} \right] p3=31 −1−11 ⇒P为P=(p1,p2,p3)= −21210616162−31−3131 使P−1AP= 10001000−2
正交变换:
( x 1 x 2 x 3 ) = [ − 1 2 1 6 − 1 3 1 2 1 6 − 1 3 0 2 6 1 3 ] ( y 1 y 2 y 3 ) \left( \begin{matrix} x_1\\ x_2\\ x_3 \end{matrix} \right)=\left[ \begin{matrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} &-\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} &\frac{1}{\sqrt{6}} &-\frac{1}{\sqrt{3}} \\ 0&\frac{2}{\sqrt{6}} &\frac{1}{\sqrt{3}} \end{matrix} \right]\left( \begin{matrix} y_1\\ y_2\\ y_3 \end{matrix} \right) x1x2x3 = −21210616162−31−3131 y1y2y3
使 f = y 1 2 + y 2 2 − 2 y 3 2 f=y_1^2+y_2^2-2y_3^2 f=y12+y22−2y32。
3、化二次型:
f = x 1 2 + 2 x 2 2 + 5 x 3 2 + 2 x 1 x 2 + 2 x 1 x 3 + 6 x 2 x 3 f=x_1^2+2x_2^2+5x_3^2+2x_1x_2+2x_1x_3+6x_2x_3 f=x12+2x22+5x32+2x1x2+2x1x3+6x2x3
成标准形,并求所用的变换矩阵。(配方法)
解:
f = x 1 2 + 2 x 2 2 + 5 x 3 2 + 2 x 1 x 2 + 2 x 1 x 3 + 6 x 2 x 3 = x 1 2 + 2 x 1 x 2 + 2 x 1 x 3 + 2 x 2 2 + 5 x 3 2 + 6 x 2 x 3 = ( x 1 + x 2 + x 3 ) 2 − x 2 2 − x 3 2 − 2 x 2 x 3 + 2 x 2 2 + 5 x 3 2 + 6 x 2 x 3 = ( x 1 + x 2 + x 3 ) 2 + x 2 2 + 4 x 3 2 + 4 x 2 x 3 = ( x 1 + x 2 + x 3 ) 2 + ( x 2 + 2 x 3 ) 2 \begin{align} f&=x_1^2+2x_2^2+5x_3^2+2x_1x_2+2x_1x_3+6x_2x_3\\ &=x_1^2+2x_1x_2+2x_1x_3+2x_2^2+5x_3^2+6x_2x_3\\ &=(x_1+x_2+x_3)^2-x_2^2-x_3^2-2x_2x_3+2x_2^2+5x_3^2+6x_2x_3\\ &=(x_1+x_2+x_3)^2+x_2^2+4x_3^2+4x_2x_3\\ &=(x_1+x_2+x_3)^2+(x_2+2x_3)^2 \end{align} f=x12+2x22+5x32+2x1x2+2x1x3+6x2x3=x12+2x1x2+2x1x3+2x22+5x32+6x2x3=(x1+x2+x3)2−x22−x32−2x2x3+2x22+5x32+6x2x3=(x1+x2+x3)2+x22+4x32+4x2x3=(x1+x2+x3)2+(x2+2x3)2
令 { y 1 = x 1 + x 2 + x 3 y 2 = x 2 + 2 x 3 y 3 = x 3 ⇒ { x 1 = y 1 − y 2 + y 3 x 2 = y 2 − 2 y 3 x 3 = y 3 ⇒ f = y 1 2 + y 2 2 \begin{cases} y_1=x_1+x_2+x_3\\ y_2=x_2+2x_3\\ y_3=x_3 \end{cases}\Rightarrow \begin{cases} x_1=y_1-y_2+y_3\\ x_2=y_2-2y_3\\ x_3=y_3 \end{cases}\Rightarrow f=y_1^2+y_2^2 ⎩ ⎨ ⎧y1=x1+x2+x3y2=x2+2x3y3=x3⇒⎩ ⎨ ⎧x1=y1−y2+y3x2=y2−2y3x3=y3⇒f=y12+y22。
⇒ P = [ 1 − 1 1 0 1 − 2 0 0 1 ] ( ∣ P ∣ = 1 ≠ 0 ) \Rightarrow P=\left[ \begin{matrix} 1 & -1 &1 \\ 0&1 &-2 \\ 0&0&1 \end{matrix} \right](|P|=1\neq 0) ⇒P= 100−1101−21 (∣P∣=1=0)
4、化二次型:
f = 2 x 1 x 2 + 2 x 1 x 3 − 6 x 2 x 3 f=2x_1x_2+2x_1x_3-6x_2x_3 f=2x1x2+2x1x3−6x2x3
为规范形,并求所用的变换矩阵。
解:令
{ x 1 = y 1 + y 2 x 2 = y 1 − y 2 x 3 = y 3 ⇒ f = 2 ( y 1 2 − y 2 2 + 2 ( y 1 + y 2 ) y 3 − 6 ( y 1 − y 2 ) y 3 ) = 2 y 1 2 − 2 y 2 2 − 4 y 1 y 3 + 8 y 2 y 3 = 2 ( y 1 2 − 2 y 1 y 3 ) − 2 ( y 2 2 − 4 y 2 y 3 ) = 2 ( y 1 − y 3 ) 2 − 2 y 3 2 − 2 ( y 2 − 2 y 3 ) 2 + 8 y 3 2 = 2 ( y 1 − y 3 ) 2 − 2 ( y 2 − 2 y 3 ) 2 + 6 y 3 2 ⇒ { z 1 = 2 ( y 1 − y 3 ) z 2 = 2 ( y 2 − 2 y 3 ) z 3 = 6 y 3 ⇒ { y 1 = 1 2 z 1 + 1 6 z 3 y 2 = 1 2 z 2 + 2 6 z 3 y 3 = 1 6 z 3 ⇒ f = z 1 2 − z 2 2 + z 3 2 ⇒ P = [ 1 1 0 1 − 1 0 0 0 1 ] [ 1 2 0 1 6 0 1 2 2 6 0 0 1 6 ] = [ 1 2 1 2 3 6 1 2 − 1 2 − 1 6 0 0 1 6 ] ( ∣ P ∣ = − 1 6 ≠ 0 ) \begin{cases} x_1=y_1+y_2\\ x_2=y_1-y_2\\ x_3=y_3 \end{cases}\\ \Rightarrow \begin{align} f&=2(y_1^2-y_2^2+2(y_1+y_2)y_3-6(y_1-y_2)y_3)\\ &=2y_1^2-2y_2^2-4y_1y_3+8y_2y_3\\ &=2(y_1^2-2y_1y_3)-2(y_2^2-4y_2y_3)\\ &=2(y_1-y_3)^2-2y_3^2-2(y_2-2y_3)^2+8y_3^2\\ &=2(y_1-y_3)^2-2(y_2-2y_3)^2+6y_3^2 \end{align}\\ \Rightarrow\begin{cases} z_1=\sqrt{2}(y_1-y_3)\\ z_2=\sqrt{2}(y_2-2y_3)\\ z_3=\sqrt{6}y_3 \end{cases}\Rightarrow\begin{cases} y_1=\frac{1}{\sqrt{2}}z_1+\frac{1}{\sqrt{6}}z_3\\ y_2=\frac{1}{\sqrt{2}}z_2+\frac{2}{\sqrt{6}}z_3\\ y_3=\frac{1}{\sqrt{6}}z_3 \end{cases}\Rightarrow f=z_1^2-z_2^2+z_3^2\\ \Rightarrow\ P=\left[ \begin{matrix} 1 & 1 &0 \\ 1&-1 &0\\ 0&0&1 \end{matrix} \right]\left[ \begin{matrix} \frac{1}{\sqrt{2}}& 0 &\frac{1}{\sqrt{6}} \\ 0&\frac{1}{\sqrt{2}} &\frac{2}{\sqrt{6}}\\ 0&0&\frac{1}{\sqrt{6}} \end{matrix} \right]=\left[ \begin{matrix} \frac{1}{\sqrt{2}}& \frac{1}{\sqrt{2}} &\frac{3}{\sqrt{6}} \\ \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}} &-\frac{1}{\sqrt{6}}\\ 0&0&\frac{1}{\sqrt{6}} \end{matrix} \right](|P|=-\frac{1}{\sqrt{6}}\neq 0) ⎩ ⎨ ⎧x1=y1+y2x2=y1−y2x3=y3⇒f=2(y12−y22+2(y1+y2)y3−6(y1−y2)y3)=2y12−2y22−4y1y3+8y2y3=2(y12−2y1y3)−2(y22−4y2y3)=2(y1−y3)2−2y32−2(y2−2y3)2+8y32=2(y1−y3)2−2(y2−2y3)2+6y32⇒⎩ ⎨ ⎧z1=2(y1−y3)z2=2(y2−2y3)z3=6y3⇒⎩ ⎨ ⎧y1=21z1+61z3y2=21z2+62z3y3=61z3⇒f=z12−z22+z32⇒ P= 1101−10001 21000210616261 = 2121021−21063−6161 (∣P∣=−61=0)
5求一个正交变换化下列二次型为标准形:
f = x 1 2 + x 3 2 + 2 x 1 x 2 − 2 x 2 x 3 f=x_1^2+x_3^2+2x_1x_2-2x_2x_3 f=x12+x32+2x1x2−2x2x3
解:
A = [ 1 1 0 1 0 − 1 0 − 1 1 ] ∣ A − λ E ∣ = ∣ 1 − λ 1 0 1 − λ − 1 0 − 1 1 − λ ∣ = ∣ 1 − λ 0 1 − λ 1 − λ − 1 0 − 1 1 − λ ∣ = ( 1 − λ ) ∣ 1 0 1 1 − λ − 1 0 − 1 1 − λ ∣ = ( 1 − λ ) ∣ 1 0 1 0 − λ − 2 0 − 1 1 − λ ∣ = ( 1 − λ ) ( − λ + λ 2 − 2 ) = ( 1 − λ ) ( λ − 2 ) ( λ + 1 ) = 0 ⇒ λ 1 = 1 , λ 2 = 2 , λ 3 = − 1 A=\left[ \begin{matrix} 1& 1 &0\\ 1&0 &-1\\ 0&-1&1 \end{matrix} \right]\\ |A-\lambda E|=\left| \begin{matrix} 1-\lambda& 1&0\\ 1&-\lambda&-1\\ 0&-1&1-\lambda \end{matrix} \right|=\left| \begin{matrix} 1-\lambda& 0&1-\lambda\\ 1&-\lambda&-1\\ 0&-1&1-\lambda \end{matrix} \right|\\ =(1-\lambda)\left| \begin{matrix} 1& 0&1\\ 1&-\lambda&-1\\ 0&-1&1-\lambda \end{matrix} \right|=(1-\lambda)\left| \begin{matrix} 1& 0&1\\ 0&-\lambda&-2\\ 0&-1&1-\lambda \end{matrix} \right|\\ =(1-\lambda)(-\lambda+\lambda^2-2)=(1-\lambda)(\lambda-2)(\lambda+1)=0\\ \Rightarrow \lambda_1=1,\lambda_2=2,\lambda_3=-1 A= 11010−10−11 ∣A−λE∣= 1−λ101−λ−10−11−λ = 1−λ100−λ−11−λ−11−λ =(1−λ) 1100−λ−11−11−λ =(1−λ) 1000−λ−11−21−λ =(1−λ)(−λ+λ2−2)=(1−λ)(λ−2)(λ+1)=0⇒λ1=1,λ2=2,λ3=−1
(1) λ 1 = 1 \lambda_1=1 λ1=1时,
∣ 0 1 0 1 − 1 − 1 0 − 1 0 ∣ → ∣ 1 − 1 − 1 0 1 0 0 0 0 ∣ → ∣ 1 0 − 1 0 1 0 0 0 0 ∣ ⇒ ξ 1 = ( 1 0 1 ) ⇒ p 1 = 1 2 ( 1 0 1 ) \left| \begin{matrix} 0& 1&0\\ 1&-1&-1\\ 0&-1&0 \end{matrix} \right|\to \left| \begin{matrix} 1&-1&-1\\ 0& 1&0\\ 0&0&0 \end{matrix} \right|\to \left| \begin{matrix} 1&0&-1\\ 0& 1&0\\ 0&0&0 \end{matrix} \right|\Rightarrow \xi_1=\left( \begin{matrix} 1\\ 0\\ 1 \end{matrix} \right)\Rightarrow p_1=\frac{1}{\sqrt{2}}\left( \begin{matrix} 1\\ 0\\ 1 \end{matrix} \right) 0101−1−10−10 → 100−110−100 → 100010−100 ⇒ξ1= 101 ⇒p1=21 101
(2) λ 2 = 2 \lambda_2=2 λ2=2时,
∣ − 1 1 0 1 − 2 − 1 0 − 1 − 1 ∣ → ∣ 1 − 1 0 0 − 1 − 1 0 − 1 − 1 ∣ → ∣ 1 − 1 0 0 1 1 0 0 0 ∣ → ∣ 1 0 1 0 1 1 0 0 0 ∣ ⇒ ξ 2 = ( − 1 − 1 1 ) ⇒ p 2 = 1 3 ( − 1 − 1 1 ) \left| \begin{matrix} -1& 1&0\\ 1&-2&-1\\ 0&-1&-1 \end{matrix} \right|\to \left| \begin{matrix} 1&-1&0\\ 0&- 1&-1\\ 0&- 1&-1 \end{matrix} \right|\to \left| \begin{matrix} 1&-1&0\\ 0&1&1\\ 0&0&0 \end{matrix} \right|\to \left| \begin{matrix} 1&0&1\\ 0&1&1\\ 0&0&0 \end{matrix} \right|\Rightarrow \xi_2=\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right)\Rightarrow p_2=\frac{1}{\sqrt{3}}\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right) −1101−2−10−1−1 → 100−1−1−10−1−1 → 100−110010 → 100010110 ⇒ξ2= −1−11 ⇒p2=31 −1−11
(3) λ 3 = − 1 \lambda_3=-1 λ3=−1时,
∣ 2 1 0 1 1 − 1 0 − 1 2 ∣ → ∣ 1 1 − 1 0 − 1 2 0 − 1 2 ∣ → ∣ 1 1 − 1 0 1 − 2 0 0 0 ∣ → ∣ 1 0 1 0 1 − 2 0 0 0 ∣ ⇒ ξ 3 = ( − 1 2 1 ) ⇒ p 2 = 1 6 ( − 1 2 1 ) ⇒ P = [ 1 2 − 1 3 − 1 6 0 − 1 3 2 6 1 2 1 3 1 6 ] 使 P − 1 A P = [ 1 0 0 0 2 0 0 0 − 1 ] ⇒ x = P y ⇒ ( x 1 x 2 x 3 ) = [ 1 2 − 1 3 − 1 6 0 − 1 3 2 6 1 2 1 3 1 6 ] ( y 1 y 2 y 3 ) ⇒ f = y 1 2 + 2 y 2 2 − y 3 2 \left| \begin{matrix} 2& 1&0\\ 1&1&-1\\ 0&-1&2 \end{matrix} \right|\to \left| \begin{matrix} 1&1&-1\\ 0&- 1&2\\ 0&- 1&2 \end{matrix} \right|\to \left| \begin{matrix} 1&1&-1\\ 0&1&-2\\ 0&0&0 \end{matrix} \right|\to \left| \begin{matrix} 1&0&1\\ 0&1&-2\\ 0&0&0 \end{matrix} \right|\Rightarrow \xi_3=\left( \begin{matrix} -1\\ 2\\ 1 \end{matrix} \right)\Rightarrow p_2=\frac{1}{\sqrt{6}}\left( \begin{matrix} -1\\ 2\\ 1 \end{matrix} \right)\\ \Rightarrow P= \left[ \begin{matrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{3}}&-\frac{1}{\sqrt{6}}\\ 0&- \frac{1}{\sqrt{3}}&\frac{2}{\sqrt{6}}\\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{3}}&\frac{1}{\sqrt{6}} \end{matrix} \right]\text{使}P^{-1}AP=\left[ \begin{matrix} 1&0&0\\ 0&2&0\\ 0&0&-1 \end{matrix} \right]\\ \Rightarrow x=Py\\ \Rightarrow \left( \begin{matrix} x_1\\ x_2\\ x_3 \end{matrix} \right)= \left[ \begin{matrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{3}}&-\frac{1}{\sqrt{6}}\\ 0&- \frac{1}{\sqrt{3}}&\frac{2}{\sqrt{6}}\\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{3}}&\frac{1}{\sqrt{6}} \end{matrix} \right]\left( \begin{matrix} y_1\\ y_2\\ y_3 \end{matrix} \right)\\ \Rightarrow f=y_1^2+2y_2^2-y_3^2 21011−10−12 → 1001−1−1−122 → 100110−1−20 → 1000101−20 ⇒ξ3= −121 ⇒p2=61 −121 ⇒P= 21021−31−3131−616261 使P−1AP= 10002000−1 ⇒x=Py⇒ x1x2x3 = 21021−31−3131−616261 y1y2y3 ⇒f=y12+2y22−y32