【二次型】

二次型定义

设有 n n n个变量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn的二次齐次函数:

f ( x 1 , x 2 , ⋯   , x n ) = a 11 x 1 2 + a 12 x 2 2 + ⋯ + a n n x n 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + 2 a n − 1 , n x n − 1 x n f(x_1,x_2,\cdots,x_n)=a_{11}x_1^2+a_{12}x_2^2+\cdots+a_{nn}x_n^2+\\ 2a_{12}x_1x_2+2a_{13}x_1x_3+2a_{n-1,n}x_{n-1}x_n f(x1,x2,,xn)=a11x12+a12x22++annxn2+2a12x1x2+2a13x1x3+2an1,nxn1xn

称为二次型

f = k 1 y 1 2 + k 2 y 2 2 + ⋯ + k n y n 2 f=k_1y_1^2+k_2y_2^2+\cdots+k_ny_n^2 f=k1y12+k2y22++knyn2,只含平方项的二次型,称为二次型的标准形

若系数 k 1 , k 2 , ⋯   , k n k_1,k_2,\cdots,k_n k1,k2,,kn只在 − 1 , 0 , 1 -1,0,1 1,0,1三个数中取值,如:

f = y 1 2 + ⋯ + y p 2 − y p + 1 2 − ⋯ − y r 2 f=y_1^2+\cdots+y_p^2-y_{p+1}^2-\cdots-y_r^2 f=y12++yp2yp+12yr2

称为二次型的规范形

二次型可以用矩阵记作:

f = X T A X f=X^TAX f=XTAX

其中 A A A对称矩阵,称为二次型 f f f的矩阵, A A A的秩称为二次型 f f f的秩

习题

1、二次型 f = x 2 − 3 z 2 − 4 x y + y z f=x^2-3z^2-4xy+yz f=x23z24xy+yz用矩阵表示。

解:

f = ( x , y , z ) [ 1 − 2 0 − 2 0 1 2 0 1 2 − 3 ] ( x y z ) f=(x,y,z)\left[ \begin{matrix} 1 & -2&0\\ -2&0&\frac{1}{2}\\ 0&\frac{1}{2}&-3 \end{matrix} \right] \left( \begin{matrix} x\\ y\\ z \end{matrix} \right) f=(x,y,z) 12020210213 xyz

合同

A , B A,B A,B n n n阶矩阵,若有可逆矩阵 C C C,使 B = C T A C B=C^TAC B=CTAC,则 A A A B B B合同

A A A为对称矩阵,则 B = C T A C B=C^TAC B=CTAC也为对称矩阵,且 R ( A ) = R ( B ) R(A)=R(B) R(A)=R(B)

习题

1、下列矩阵中,与矩阵:

A = [ 1 2 0 2 1 0 0 0 1 ] A=\left[ \begin{matrix} 1 & 2&0\\ 2&1&0\\ 0&0&1 \end{matrix} \right] A= 120210001

合同的是(B)。

(A) [ 1 0 0 0 1 0 0 0 1 ] \left[ \begin{matrix} 1 & 0&0\\ 0&1&0\\ 0&0&1 \end{matrix} \right] 100010001 (B) [ 1 0 0 0 1 0 0 0 − 1 ] \left[ \begin{matrix} 1 & 0&0\\ 0&1&0\\ 0&0&-1 \end{matrix} \right] 100010001 C) [ 1 0 0 0 − 1 0 0 0 − 1 ] \left[ \begin{matrix} 1 & 0&0\\ 0&-1&0\\ 0&0&-1 \end{matrix} \right] 100010001 (D) [ − 1 0 0 0 − 1 0 0 0 − 1 ] \left[ \begin{matrix} -1 & 0&0\\ 0&-1&0\\ 0&0&-1 \end{matrix} \right] 100010001

解:

∣ A − λ E ∣ = ∣ 1 − λ 2 0 2 1 − λ 0 0 0 1 − λ ∣ = ( 1 − λ ) ∣ 1 − λ 2 2 1 − λ ∣ = ( 1 − λ ) ( λ − 3 ) ( λ + 1 ) = 0 ⇒ λ 1 = 1 , λ 2 = 3 , λ 3 = − 1 ⇒ 正惯性指数为2 ⇒ 负惯性指数为1 |A-\lambda E|=\left| \begin{matrix} 1 -\lambda& 2&0\\ 2&1-\lambda&0\\ 0&0&1-\lambda \end{matrix} \right|=(1-\lambda)\left| \begin{matrix} 1-\lambda & 2\\ 2&1-\lambda \end{matrix} \right|\\ =(1-\lambda)(\lambda-3)(\lambda+1)=0\\ \Rightarrow \lambda_1=1,\lambda_2=3,\lambda_3=-1\\ \Rightarrow \text{正惯性指数为2}\\ \Rightarrow \text{负惯性指数为1}\\ AλE= 1λ2021λ0001λ =(1λ) 1λ221λ =(1λ)(λ3)(λ+1)=0λ1=1,λ2=3,λ3=1正惯性指数为2负惯性指数为1

性质

任给二次型 f = ∑ i = 1 n a i j x i x j ( a i j = a j i ) f=\sum_{i=1}^n a_{ij}x_ix_j(a_{ij}=a_{ji}) f=i=1naijxixj(aij=aji),总有正交变换 x = P y x=Py x=Py,使 f f f化为标准形:

f = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 f=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2 f=λ1y12+λ2y22++λnyn2

其中 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn f f f的矩阵 A = ( a i j ) A=(a_{ij}) A=(aij)特征值

任给 n n n元二次型 f ( x ) = x T A x ( A T = A ) f(x)=x^TAx(A^T=A) f(x)=xTAx(AT=A),总有可逆变换 x = C z x=Cz x=Cz,使 f ( z ) f(z) f(z)规范形

二次型的标准形中正系数的个数称为二次型的正惯性指数
二次型的标准形中负系数的个数称为二次型的负惯性指数

设二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx,若对 ∀ x ≠ 0 \forall x \neq 0 x=0,有 f ( x ) > 0 , ( f ( 0 ) = 0 ) f(x)>0,(f(0)=0) f(x)>0,(f(0)=0),则 f f f正定二次型,称 A A A正定的
设二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx,若对 ∀ x ≠ 0 \forall x \neq 0 x=0,有 f ( x ) < 0 , ( f ( 0 ) = 0 ) f(x)<0,(f(0)=0) f(x)<0,(f(0)=0),则 f f f负定二次型,称 A A A负定的

n n n元二次型 f = x T A x f=x^TAx f=xTAx正定的充要条件是:

  • 它的标准形的 n n n个系数全为正;
  • 它的规范形的 n n n个系数全为1;
  • 它的正惯性指数为 n n n

对称矩阵 A A A为正定的充要条件:

  • A A A的特征值全为正。

习题

1、判定二次型 f = − 5 x 2 − 6 y 2 − 4 z 2 + 4 x y + 4 x z f=-5x^2-6y^2-4z^2+4xy+4xz f=5x26y24z2+4xy+4xz的正定性。

解:

A = [ − 5 2 2 2 − 6 0 2 0 − 4 ] ⇒ λ 1 + λ 2 + λ 3 = − 15 ⇒ λ i 不全 > 0 ⇒ A 为负定 A=\left[ \begin{matrix} -5 & 2&2\\ 2&-6&0\\ 2&0&-4 \end{matrix} \right]\\ \Rightarrow \lambda_1+\lambda_2+\lambda_3=-15\\ \Rightarrow \lambda_i\text{不全}>0\\ \Rightarrow A\text{为负定} A= 522260204 λ1+λ2+λ3=15λi不全>0A为负定

2、求一个正交变换 x = P y x=Py x=Py,把二次型:

f = − 2 x 1 x 2 + 2 x 1 x 3 + 2 x 2 x 3 f=-2x_1x_2+2x_1x_3+2x_2x_3 f=2x1x2+2x1x3+2x2x3

化为标准形。(对角化)

解:

A = [ 0 − 1 1 − 1 0 1 1 1 0 ] ∣ A − λ E ∣ = ∣ − λ − 1 1 − 1 − λ 1 1 1 − λ ∣ = ∣ 0 λ − 1 1 − λ 2 0 1 − λ 1 − λ 1 1 − λ ∣ = ∣ λ − 1 1 − λ 2 1 − λ 1 − λ ∣ = ( λ − 1 ) ( λ + 2 ) ( 1 − λ ) = 0 ⇒ λ 1 = λ 2 = 1 , λ 3 = − 2 A=\left[ \begin{matrix} 0 & -1&1\\ -1&0&1\\ 1&1&0 \end{matrix} \right]\\ |A-\lambda E|=\left| \begin{matrix} -\lambda& -1&1\\ -1&-\lambda&1\\ 1&1&-\lambda \end{matrix} \right|=\left| \begin{matrix} 0& \lambda-1&1-\lambda^2\\ 0&1-\lambda&1-\lambda\\ 1&1&-\lambda \end{matrix} \right|\\ =\left| \begin{matrix} \lambda-1&1-\lambda^2\\ 1-\lambda&1-\lambda\\ \end{matrix} \right|=(\lambda-1)(\lambda+2)(1-\lambda)=0\\ \Rightarrow \lambda_1=\lambda_2=1,\lambda_3=-2 A= 011101110 AλE= λ111λ111λ = 001λ11λ11λ21λλ = λ11λ1λ21λ =(λ1)(λ+2)(1λ)=0λ1=λ2=1,λ3=2

(1) λ 1 = λ 2 = 1 \lambda_1=\lambda_2=1 λ1=λ2=1时,

[ − 1 − 1 1 − 1 − 1 1 1 1 − 1 ] → [ 1 1 − 1 0 0 0 0 0 0 ] ⇒ ξ 1 = ( − 1 1 0 ) , ξ 2 = ( 1 0 1 ) \left[ \begin{matrix} -1 & -1&1\\ -1&-1&1\\ 1&1&-1 \end{matrix} \right]\to \left[ \begin{matrix} 1 & 1&-1\\ 0&0&0\\ 0&0&0 \end{matrix} \right]\\ \Rightarrow \xi_1=\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right),\xi_2=\left( \begin{matrix} 1\\ 0\\ 1 \end{matrix} \right) 111111111 100100100 ξ1= 110 ,ξ2= 101

ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2正交化

η 1 = ( − 1 1 0 ) η 2 = ξ 2 − [ ξ 1 , ξ 2 ] [ ξ 1 , ξ 1 ] ⋅ ξ 1 = ( 1 0 1 ) − − 1 1 + 1 ( − 1 1 0 ) = 1 2 ( 1 1 2 ) \eta_1=\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right)\\ \eta_2=\xi_2-\frac{[\xi_1,\xi_2]}{[\xi_1,\xi_1]}\cdot \xi_1=\left( \begin{matrix} 1\\ 0\\ 1 \end{matrix} \right)-\frac{-1}{1+1}\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right)=\frac{1}{2}\left( \begin{matrix} 1\\ 1\\ 2 \end{matrix} \right) η1= 110 η2=ξ2[ξ1,ξ1][ξ1,ξ2]ξ1= 101 1+11 110 =21 112

η 1 , η 2 \eta_1,\eta_2 η1,η2单位化

⇒ p 1 = 1 2 ( − 1 1 0 ) , p 2 = 1 6 ( 1 1 2 ) \Rightarrow p_1=\frac{1}{\sqrt{2}}\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right),p_2=\frac{1}{\sqrt{6}}\left( \begin{matrix} 1\\ 1\\ 2 \end{matrix} \right) p1=2 1 110 ,p2=6 1 112

(2) λ 3 = − 2 \lambda_3=-2 λ3=2时,

[ 2 − 1 1 − 1 2 1 1 1 2 ] → [ 1 1 2 0 3 3 0 − 3 − 3 ] → [ 1 1 2 0 1 1 0 0 0 ] → [ 1 0 1 0 1 1 0 0 0 ] ⇒ ξ 3 = ( − 1 − 1 1 ) \left[ \begin{matrix} 2 & -1&1\\ -1&2&1\\ 1&1&2 \end{matrix} \right]\to \left[ \begin{matrix} 1&1&2\\ 0&3&3\\ 0&-3&-3 \end{matrix} \right]\to \left[ \begin{matrix} 1&1&2\\ 0&1&1\\ 0&0&0 \end{matrix} \right]\\ \to \left[ \begin{matrix} 1&0&1\\ 0&1&1\\ 0&0&0 \end{matrix} \right] \Rightarrow \xi_3=\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right) 211121112 100133233 100110210 100010110 ξ3= 111

ξ 3 \xi_3 ξ3单位化

p 3 = 1 3 ( − 1 − 1 1 ) ⇒ P 为 P = ( p 1 , p 2 , p 3 ) = [ − 1 2 1 6 − 1 3 1 2 1 6 − 1 3 0 2 6 1 3 ] 使 P − 1 A P = [ 1 0 0 0 1 0 0 0 − 2 ] p_3=\frac{1}{\sqrt{3}}\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right)\\ \Rightarrow P\text{为}\\ P=(p_1,p_2,p_3)=\left[ \begin{matrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} &-\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} &\frac{1}{\sqrt{6}} &-\frac{1}{\sqrt{3}} \\ 0&\frac{2}{\sqrt{6}} &\frac{1}{\sqrt{3}} \end{matrix} \right]\text{使}P^{-1}AP=\left[ \begin{matrix} 1&0&0\\ 0&1&0\\ 0&0&-2 \end{matrix} \right] p3=3 1 111 PP=(p1,p2,p3)= 2 12 106 16 16 23 13 13 1 使P1AP= 100010002

正交变换

( x 1 x 2 x 3 ) = [ − 1 2 1 6 − 1 3 1 2 1 6 − 1 3 0 2 6 1 3 ] ( y 1 y 2 y 3 ) \left( \begin{matrix} x_1\\ x_2\\ x_3 \end{matrix} \right)=\left[ \begin{matrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} &-\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} &\frac{1}{\sqrt{6}} &-\frac{1}{\sqrt{3}} \\ 0&\frac{2}{\sqrt{6}} &\frac{1}{\sqrt{3}} \end{matrix} \right]\left( \begin{matrix} y_1\\ y_2\\ y_3 \end{matrix} \right) x1x2x3 = 2 12 106 16 16 23 13 13 1 y1y2y3

使 f = y 1 2 + y 2 2 − 2 y 3 2 f=y_1^2+y_2^2-2y_3^2 f=y12+y222y32

3、化二次型:

f = x 1 2 + 2 x 2 2 + 5 x 3 2 + 2 x 1 x 2 + 2 x 1 x 3 + 6 x 2 x 3 f=x_1^2+2x_2^2+5x_3^2+2x_1x_2+2x_1x_3+6x_2x_3 f=x12+2x22+5x32+2x1x2+2x1x3+6x2x3

成标准形,并求所用的变换矩阵。(配方法)

解:

f = x 1 2 + 2 x 2 2 + 5 x 3 2 + 2 x 1 x 2 + 2 x 1 x 3 + 6 x 2 x 3 = x 1 2 + 2 x 1 x 2 + 2 x 1 x 3 + 2 x 2 2 + 5 x 3 2 + 6 x 2 x 3 = ( x 1 + x 2 + x 3 ) 2 − x 2 2 − x 3 2 − 2 x 2 x 3 + 2 x 2 2 + 5 x 3 2 + 6 x 2 x 3 = ( x 1 + x 2 + x 3 ) 2 + x 2 2 + 4 x 3 2 + 4 x 2 x 3 = ( x 1 + x 2 + x 3 ) 2 + ( x 2 + 2 x 3 ) 2 \begin{align} f&=x_1^2+2x_2^2+5x_3^2+2x_1x_2+2x_1x_3+6x_2x_3\\ &=x_1^2+2x_1x_2+2x_1x_3+2x_2^2+5x_3^2+6x_2x_3\\ &=(x_1+x_2+x_3)^2-x_2^2-x_3^2-2x_2x_3+2x_2^2+5x_3^2+6x_2x_3\\ &=(x_1+x_2+x_3)^2+x_2^2+4x_3^2+4x_2x_3\\ &=(x_1+x_2+x_3)^2+(x_2+2x_3)^2 \end{align} f=x12+2x22+5x32+2x1x2+2x1x3+6x2x3=x12+2x1x2+2x1x3+2x22+5x32+6x2x3=(x1+x2+x3)2x22x322x2x3+2x22+5x32+6x2x3=(x1+x2+x3)2+x22+4x32+4x2x3=(x1+x2+x3)2+(x2+2x3)2

{ y 1 = x 1 + x 2 + x 3 y 2 = x 2 + 2 x 3 y 3 = x 3 ⇒ { x 1 = y 1 − y 2 + y 3 x 2 = y 2 − 2 y 3 x 3 = y 3 ⇒ f = y 1 2 + y 2 2 \begin{cases} y_1=x_1+x_2+x_3\\ y_2=x_2+2x_3\\ y_3=x_3 \end{cases}\Rightarrow \begin{cases} x_1=y_1-y_2+y_3\\ x_2=y_2-2y_3\\ x_3=y_3 \end{cases}\Rightarrow f=y_1^2+y_2^2 y1=x1+x2+x3y2=x2+2x3y3=x3 x1=y1y2+y3x2=y22y3x3=y3f=y12+y22

⇒ P = [ 1 − 1 1 0 1 − 2 0 0 1 ] ( ∣ P ∣ = 1 ≠ 0 ) \Rightarrow P=\left[ \begin{matrix} 1 & -1 &1 \\ 0&1 &-2 \\ 0&0&1 \end{matrix} \right](|P|=1\neq 0) P= 100110121 (P=1=0)

4、化二次型:

f = 2 x 1 x 2 + 2 x 1 x 3 − 6 x 2 x 3 f=2x_1x_2+2x_1x_3-6x_2x_3 f=2x1x2+2x1x36x2x3

为规范形,并求所用的变换矩阵。

解:令

{ x 1 = y 1 + y 2 x 2 = y 1 − y 2 x 3 = y 3 ⇒ f = 2 ( y 1 2 − y 2 2 + 2 ( y 1 + y 2 ) y 3 − 6 ( y 1 − y 2 ) y 3 ) = 2 y 1 2 − 2 y 2 2 − 4 y 1 y 3 + 8 y 2 y 3 = 2 ( y 1 2 − 2 y 1 y 3 ) − 2 ( y 2 2 − 4 y 2 y 3 ) = 2 ( y 1 − y 3 ) 2 − 2 y 3 2 − 2 ( y 2 − 2 y 3 ) 2 + 8 y 3 2 = 2 ( y 1 − y 3 ) 2 − 2 ( y 2 − 2 y 3 ) 2 + 6 y 3 2 ⇒ { z 1 = 2 ( y 1 − y 3 ) z 2 = 2 ( y 2 − 2 y 3 ) z 3 = 6 y 3 ⇒ { y 1 = 1 2 z 1 + 1 6 z 3 y 2 = 1 2 z 2 + 2 6 z 3 y 3 = 1 6 z 3 ⇒ f = z 1 2 − z 2 2 + z 3 2 ⇒   P = [ 1 1 0 1 − 1 0 0 0 1 ] [ 1 2 0 1 6 0 1 2 2 6 0 0 1 6 ] = [ 1 2 1 2 3 6 1 2 − 1 2 − 1 6 0 0 1 6 ] ( ∣ P ∣ = − 1 6 ≠ 0 ) \begin{cases} x_1=y_1+y_2\\ x_2=y_1-y_2\\ x_3=y_3 \end{cases}\\ \Rightarrow \begin{align} f&=2(y_1^2-y_2^2+2(y_1+y_2)y_3-6(y_1-y_2)y_3)\\ &=2y_1^2-2y_2^2-4y_1y_3+8y_2y_3\\ &=2(y_1^2-2y_1y_3)-2(y_2^2-4y_2y_3)\\ &=2(y_1-y_3)^2-2y_3^2-2(y_2-2y_3)^2+8y_3^2\\ &=2(y_1-y_3)^2-2(y_2-2y_3)^2+6y_3^2 \end{align}\\ \Rightarrow\begin{cases} z_1=\sqrt{2}(y_1-y_3)\\ z_2=\sqrt{2}(y_2-2y_3)\\ z_3=\sqrt{6}y_3 \end{cases}\Rightarrow\begin{cases} y_1=\frac{1}{\sqrt{2}}z_1+\frac{1}{\sqrt{6}}z_3\\ y_2=\frac{1}{\sqrt{2}}z_2+\frac{2}{\sqrt{6}}z_3\\ y_3=\frac{1}{\sqrt{6}}z_3 \end{cases}\Rightarrow f=z_1^2-z_2^2+z_3^2\\ \Rightarrow\ P=\left[ \begin{matrix} 1 & 1 &0 \\ 1&-1 &0\\ 0&0&1 \end{matrix} \right]\left[ \begin{matrix} \frac{1}{\sqrt{2}}& 0 &\frac{1}{\sqrt{6}} \\ 0&\frac{1}{\sqrt{2}} &\frac{2}{\sqrt{6}}\\ 0&0&\frac{1}{\sqrt{6}} \end{matrix} \right]=\left[ \begin{matrix} \frac{1}{\sqrt{2}}& \frac{1}{\sqrt{2}} &\frac{3}{\sqrt{6}} \\ \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}} &-\frac{1}{\sqrt{6}}\\ 0&0&\frac{1}{\sqrt{6}} \end{matrix} \right](|P|=-\frac{1}{\sqrt{6}}\neq 0) x1=y1+y2x2=y1y2x3=y3f=2(y12y22+2(y1+y2)y36(y1y2)y3)=2y122y224y1y3+8y2y3=2(y122y1y3)2(y224y2y3)=2(y1y3)22y322(y22y3)2+8y32=2(y1y3)22(y22y3)2+6y32 z1=2 (y1y3)z2=2 (y22y3)z3=6 y3 y1=2 1z1+6 1z3y2=2 1z2+6 2z3y3=6 1z3f=z12z22+z32 P= 110110001 2 10002 106 16 26 1 = 2 12 102 12 106 36 16 1 (P=6 1=0)

5求一个正交变换化下列二次型为标准形:

f = x 1 2 + x 3 2 + 2 x 1 x 2 − 2 x 2 x 3 f=x_1^2+x_3^2+2x_1x_2-2x_2x_3 f=x12+x32+2x1x22x2x3

解:

A = [ 1 1 0 1 0 − 1 0 − 1 1 ] ∣ A − λ E ∣ = ∣ 1 − λ 1 0 1 − λ − 1 0 − 1 1 − λ ∣ = ∣ 1 − λ 0 1 − λ 1 − λ − 1 0 − 1 1 − λ ∣ = ( 1 − λ ) ∣ 1 0 1 1 − λ − 1 0 − 1 1 − λ ∣ = ( 1 − λ ) ∣ 1 0 1 0 − λ − 2 0 − 1 1 − λ ∣ = ( 1 − λ ) ( − λ + λ 2 − 2 ) = ( 1 − λ ) ( λ − 2 ) ( λ + 1 ) = 0 ⇒ λ 1 = 1 , λ 2 = 2 , λ 3 = − 1 A=\left[ \begin{matrix} 1& 1 &0\\ 1&0 &-1\\ 0&-1&1 \end{matrix} \right]\\ |A-\lambda E|=\left| \begin{matrix} 1-\lambda& 1&0\\ 1&-\lambda&-1\\ 0&-1&1-\lambda \end{matrix} \right|=\left| \begin{matrix} 1-\lambda& 0&1-\lambda\\ 1&-\lambda&-1\\ 0&-1&1-\lambda \end{matrix} \right|\\ =(1-\lambda)\left| \begin{matrix} 1& 0&1\\ 1&-\lambda&-1\\ 0&-1&1-\lambda \end{matrix} \right|=(1-\lambda)\left| \begin{matrix} 1& 0&1\\ 0&-\lambda&-2\\ 0&-1&1-\lambda \end{matrix} \right|\\ =(1-\lambda)(-\lambda+\lambda^2-2)=(1-\lambda)(\lambda-2)(\lambda+1)=0\\ \Rightarrow \lambda_1=1,\lambda_2=2,\lambda_3=-1 A= 110101011 AλE= 1λ101λ1011λ = 1λ100λ11λ11λ =(1λ) 1100λ1111λ =(1λ) 1000λ1121λ =(1λ)(λ+λ22)=(1λ)(λ2)(λ+1)=0λ1=1,λ2=2,λ3=1

(1) λ 1 = 1 \lambda_1=1 λ1=1时,

∣ 0 1 0 1 − 1 − 1 0 − 1 0 ∣ → ∣ 1 − 1 − 1 0 1 0 0 0 0 ∣ → ∣ 1 0 − 1 0 1 0 0 0 0 ∣ ⇒ ξ 1 = ( 1 0 1 ) ⇒ p 1 = 1 2 ( 1 0 1 ) \left| \begin{matrix} 0& 1&0\\ 1&-1&-1\\ 0&-1&0 \end{matrix} \right|\to \left| \begin{matrix} 1&-1&-1\\ 0& 1&0\\ 0&0&0 \end{matrix} \right|\to \left| \begin{matrix} 1&0&-1\\ 0& 1&0\\ 0&0&0 \end{matrix} \right|\Rightarrow \xi_1=\left( \begin{matrix} 1\\ 0\\ 1 \end{matrix} \right)\Rightarrow p_1=\frac{1}{\sqrt{2}}\left( \begin{matrix} 1\\ 0\\ 1 \end{matrix} \right) 010111010 100110100 100010100 ξ1= 101 p1=2 1 101

(2) λ 2 = 2 \lambda_2=2 λ2=2时,

∣ − 1 1 0 1 − 2 − 1 0 − 1 − 1 ∣ → ∣ 1 − 1 0 0 − 1 − 1 0 − 1 − 1 ∣ → ∣ 1 − 1 0 0 1 1 0 0 0 ∣ → ∣ 1 0 1 0 1 1 0 0 0 ∣ ⇒ ξ 2 = ( − 1 − 1 1 ) ⇒ p 2 = 1 3 ( − 1 − 1 1 ) \left| \begin{matrix} -1& 1&0\\ 1&-2&-1\\ 0&-1&-1 \end{matrix} \right|\to \left| \begin{matrix} 1&-1&0\\ 0&- 1&-1\\ 0&- 1&-1 \end{matrix} \right|\to \left| \begin{matrix} 1&-1&0\\ 0&1&1\\ 0&0&0 \end{matrix} \right|\to \left| \begin{matrix} 1&0&1\\ 0&1&1\\ 0&0&0 \end{matrix} \right|\Rightarrow \xi_2=\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right)\Rightarrow p_2=\frac{1}{\sqrt{3}}\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right) 110121011 100111011 100110010 100010110 ξ2= 111 p2=3 1 111

(3) λ 3 = − 1 \lambda_3=-1 λ3=1时,

∣ 2 1 0 1 1 − 1 0 − 1 2 ∣ → ∣ 1 1 − 1 0 − 1 2 0 − 1 2 ∣ → ∣ 1 1 − 1 0 1 − 2 0 0 0 ∣ → ∣ 1 0 1 0 1 − 2 0 0 0 ∣ ⇒ ξ 3 = ( − 1 2 1 ) ⇒ p 2 = 1 6 ( − 1 2 1 ) ⇒ P = [ 1 2 − 1 3 − 1 6 0 − 1 3 2 6 1 2 1 3 1 6 ] 使 P − 1 A P = [ 1 0 0 0 2 0 0 0 − 1 ] ⇒ x = P y ⇒ ( x 1 x 2 x 3 ) = [ 1 2 − 1 3 − 1 6 0 − 1 3 2 6 1 2 1 3 1 6 ] ( y 1 y 2 y 3 ) ⇒ f = y 1 2 + 2 y 2 2 − y 3 2 \left| \begin{matrix} 2& 1&0\\ 1&1&-1\\ 0&-1&2 \end{matrix} \right|\to \left| \begin{matrix} 1&1&-1\\ 0&- 1&2\\ 0&- 1&2 \end{matrix} \right|\to \left| \begin{matrix} 1&1&-1\\ 0&1&-2\\ 0&0&0 \end{matrix} \right|\to \left| \begin{matrix} 1&0&1\\ 0&1&-2\\ 0&0&0 \end{matrix} \right|\Rightarrow \xi_3=\left( \begin{matrix} -1\\ 2\\ 1 \end{matrix} \right)\Rightarrow p_2=\frac{1}{\sqrt{6}}\left( \begin{matrix} -1\\ 2\\ 1 \end{matrix} \right)\\ \Rightarrow P= \left[ \begin{matrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{3}}&-\frac{1}{\sqrt{6}}\\ 0&- \frac{1}{\sqrt{3}}&\frac{2}{\sqrt{6}}\\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{3}}&\frac{1}{\sqrt{6}} \end{matrix} \right]\text{使}P^{-1}AP=\left[ \begin{matrix} 1&0&0\\ 0&2&0\\ 0&0&-1 \end{matrix} \right]\\ \Rightarrow x=Py\\ \Rightarrow \left( \begin{matrix} x_1\\ x_2\\ x_3 \end{matrix} \right)= \left[ \begin{matrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{3}}&-\frac{1}{\sqrt{6}}\\ 0&- \frac{1}{\sqrt{3}}&\frac{2}{\sqrt{6}}\\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{3}}&\frac{1}{\sqrt{6}} \end{matrix} \right]\left( \begin{matrix} y_1\\ y_2\\ y_3 \end{matrix} \right)\\ \Rightarrow f=y_1^2+2y_2^2-y_3^2 210111012 100111122 100110120 100010120 ξ3= 121 p2=6 1 121 P= 2 102 13 13 13 16 16 26 1 使P1AP= 100020001 x=Py x1x2x3 = 2 102 13 13 13 16 16 26 1 y1y2y3 f=y12+2y22y32

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值