最小二乘法---线性回归的求解方法

这几天看书的时候突然注意到了这个经典的优化方法,于是重新推导了一遍,为以后应用做参考。

背景

最小二乘法应该是我接触的最早的优化方法,也是求解线性回归的一种方法。线性回归的主要作用是用拟合的方式,求解两组变量之间的线性关系(当然也可以不是线性的,那就是另外的回归方法了)。也就是把一个系统的输出写成输入的线性组合的形式。而这组线性关系的参数求解方法,就是最小二乘法。

我们从最简单的线性回归开始,即输入和输出都是1维的。此时,最小二乘法也是最简单的。

假设有输入信号 x = { x 0 , x 1 , . . . , x t } x = \{x_0, x_1, ..., x_t\} x={ x0,x1,...,xt},同时输出信号为 y = { y 0 , y 1 , . . . , y t } y = \{y_0, y_1, ..., y_t\} y={ y0,y1,...,yt},我们假设输入信号 x x x和输出信号 y y y之间的关系可以写成如下形式:

y p r e = a x + b (1) y_{pre} = ax+b \tag{1} ypre=ax+b(1)

我们需要求解最优的 a a a b b b,这里最优的含义就是,预测的最准确,也就是预测值和真实值的误差最小,即:

a r g   m i n a , b ∑ i = 0 t ( y i − a x i − b ) 2 (2) arg\, min_{a, b}{\sum_{i=0}^{t}{(y_i-ax_i-b)^2}} \tag{2} argmina,bi=0t(yiaxib)2(2)

我们假设误差函数为:

e r r = ∑ i = 0 t ( y i − a x i − b ) 2 (3) err = \sum_{i=0}^{t}{(y_i-ax_i-b)^2} \tag{3} err=i=0t(yiaxib)2(3)

e r r err err a a a b b b分别求偏导:

∂ e r r ∂ a = ∑ i = 0 t 2 ( a x i + b − y i ) ∗ x i (4) \frac{\partial{err}}{\partial{a}} = \sum_{i=0}^{t}{2(ax_i+b-y_i)*x_i} \tag{4} aerr=i=0t2(axi+byi)xi(4)

∂ e r r ∂ b = ∑ i = 0 t 2 ( a x i + b − y i ) (5) \frac{\partial{err}}{\partial{b}} = \sum_{i=0}^{t}{2(ax_i+b-y_i)} \tag{5} berr=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值