兄弟,你染上PID了?!

一、PID概要

准确控制的核心: 反馈

预期
偏差
控制系统
传感器检测
反馈

适用于线性系统(二阶以内),满足齐次性、叠加性
故,高阶系统需化二阶系统,非线性需线性化。

二、控制系统

1. 开环控制系统
  • 无反馈控制系统,较易理解,系统框图略
  • 前馈控制系统,传感器检测干扰量。
    在这里插入图片描述
2. 闭环控制系统
  • 单环控制:传感器检测实际输出
  • 双环控制:相较于单环增加了内部环,使得外环控制更加容易,控制更加稳定。
    在这里插入图片描述
    home.csdnimg.cn/images/20230724024159.png?origin_url=%E5%8F%8D%E9%A6%88.jpg&pos_id=img-7pmflLLG-1727694765127)
3. 复合型控制系统

综合以上两种,框图如图:
在这里插入图片描述

三、PID公式

内容

e = X − Y e=X-Y e=XY为偏差量。
连续
C = K p ∗ e + K i ∗ ∫ 0 t e   d x + K d ∗ d e d t C = K_p*e+K_i*\int_{0}^{t} e \, dx+K_d*\frac{de}{dt} C=Kpe+Ki0tedx+Kddtde
离散
C = K p ∗ e i + K i ∗ ∑ n = 0 ∞ e i   + K d ∗ Δ e i − Δ e i − 1 Δ t C = K_p*e_i+K_i*\sum_{n=0}^{\infty} e_i \, +K_d*\frac{\Delta e_i-\Delta e_{i-1} }{\Delta t} C=Kpei+Kin=0ei+KdΔtΔeiΔei1
K d Δ t = K d \frac{K_d}{\Delta t} = K_d ΔtKd=Kd
则有:
C = K p ∗ e i + K i ∗ ∑ n = 0 ∞ e i   + K d ∗ ( Δ e i − Δ e i − 1 ) C = K_p*e_i+K_i*\sum_{n=0}^{\infty} e_i \, +K_d*(\Delta e_i-\Delta e_{i-1}) C=Kpei+Kin=0ei+Kd(ΔeiΔei1)
一般有: P = K p ∗ e i P = K_p*e_i P=Kpei
I = K i ∗ ∑ n = 0 ∞ e i I = K_i*\sum_{n=0}^{\infty} e_i I=Kin=0ei
D = K d ∗ ( Δ e i − Δ e i − 1 ) D = K_d*(\Delta e_i-\Delta e_{i-1}) D=Kd(ΔeiΔei1)

公式理解

假设有一悬停的无人机,需要从地面飞到100m的高度并悬停。其控制框图应大致如下:
在这里插入图片描述

我们从无人机起飞到悬停整个过程试图理解PID:

  1. 首先,飞机需要起飞,需要动力。而且,为了让飞机快速且稳定的到达,我们希望在起飞时动力大一些,随着高度偏差量的减小,速度逐渐平稳直至悬停。因此最直接的方式就是直接将高度偏差量乘以某一系数,由控制器传给电机。这就是比例系数 K p K_p Kp。此项即为 P P P项。
  2. 但是,由于无人机自身的质量,它时刻都需要分出一个恒定的力来平衡重力。因此,如果只有 P P P项,由于高度偏差量最终减小至零,此时无论 K P K_P KP为多少都无法悬停,无人机始终无法悬停到目标位置。故我们仍需要一个不完全与当前时刻状态有关的量来帮助 P P P值。因此,我们想到了积分。积分是一个随时间增长的量,不完全与当前时刻状态相关。故我们引入 I I I项,定义为积分系数乘以偏差随时间的积分。
  3. 现在,我们可以控制无人机飞到指定高度。但我们希望对其的控制可以稳定顺滑,不希望出现突变的控制信号。为了防止控制量突变(斜率过大),当 e e e变化曲线斜率过大时,我们需要一个量去抵消此时正向的控制值,适当阻碍电机旋转。因此,我们可以使用微分的概念。微分可以体现变化快慢,且在未达到预期悬停高度时,变化率均为负数,可以减缓变化。故引入 D D D值。
  4. 三者相加,即为最终公式
    此时,PID控制器可看作是P控制器,I控制器和D控制器三者并联。

特殊情况处理

  • 场景一:当无人机起飞时,有人用手将无人机固定在原位不动。此时 e i e_i ei持续积分, I I I值持续增大。当积累一定时间后,一旦松手,由于 I I I值已被积累到巨大值,飞机将以不可控的加速度上升,造成危险。
    解决方案:积分限幅。限制 I I I值的最大值,当到达 I m a x I_{max} Imax后, I I I值不再增加。
  • 场景二:无人机需要悬停高度太高, e i e_i ei积分过大。快到达悬停点时由于 I I I值过大,导致无人机仍以较大速度上升,容易造成超调。
    解决方案:积分分离。同样的,当 e i e_i ei超过某值时 I I I值停止积分。

两个实例

M3508电机

在这里插入图片描述

GM6020电机

在这里插入图片描述

调参技巧(持续更新)

  • 随着比例增益越大,曲线会出现振荡。(现象有点像荡秋千,如果没人在后面推,就会来回摆荡,最终慢慢停下来) 当出现振荡现象,就能增加i值来抑制振荡部分。直至抑制到没有振荡现象。 但随着i值增加,过度抑制会导致低频共振。 所以这个时候就需要d值来抑制低频共振。
  • 参数整定找最佳,从小到大顺序查,
    先是比例后积分,最后再把微分加,
    曲线振荡很频繁,比例度盘要放大,
    曲线漂浮绕大湾,比例度盘往小扳,
    曲线偏离回复慢,积分时间往下降,
    曲线波动周期长,积分时间再加长,
    曲线振荡频率快,先把微分降下来,
    动差大来波动慢,微分时间应加长,
    理想曲线两个波,前高后低四比一,
    一看二调多分析,调节质量不会低。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值