抽象代数笔记-群、子群、商群

【参考资料】
【1】近世代数基础
【2】丘维声 抽象代数
【3】https://wenku.baidu.com/view/c47b1214650e52ea55189843.html

代数系统

所谓代数系统理解为一个集合以及定义在集合之上的一个二元元算

同态映射

一个 A A A A ˉ \bar{A} Aˉ的映射 ϕ \phi ϕ,其中 o o o o ˉ \bar{o} oˉ分别是定义在其上的运算,若存在:
只要 a → a ˉ , b → b ˉ a \to \bar{a}, \quad b \to \bar{b} aaˉ,bbˉ就有 a o b → a ˉ o ˉ b ˉ a o b \to \bar{a} \bar{o} \bar{b} aobaˉoˉbˉ

同构映射

一个 A A A A ˉ \bar{A} Aˉ一一映射 (与同态不同) ϕ \phi ϕ,其中 o o o o ˉ \bar{o} oˉ分别是定义在其上的运算,若存在:
只要 a → a ˉ , b → b ˉ a \to \bar{a}, \quad b \to \bar{b} aaˉ,bbˉ 就有 a o b → a ˉ o ˉ b ˉ a o b \to \bar{a} \bar{o} \bar{b} aobaˉoˉbˉ

如果这个映射是A到A自身的,则称为 ++自同构++

群定义为一个非空集合G,在G上定义一个乘法元算,记为 { G , ⋅ G, \cdot G,},满足如下一些要求:

  1. 运算具备封闭性,即 a ⋅ b ∈ G a \cdot b \in G abG
  2. 满足结合律,即 ( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) (a \cdot b) \cdot c = a \cdot (b \cdot c) (ab)c=a(bc)
  3. 存在幺元,即 a ⋅ e = a a \cdot e = a ae=a
  4. 存在逆元,即 a ⋅ a − 1 = e a\cdot a^{-1}=e aa1=e
子群

如果存在一个非空集合H属于集合G,并且H对G上的运算仍然满足群的要求,那么我们称H是G的一个子群。

定理:一个群G的非空子集H作为G的一个子群的充要条件是: a , b ∈ H → a b − 1 ∈ H a, b \in H \to ab^{-1} \in H a,bHab1H

笛卡儿积

A × B = { ( a , b ) ∣ a ∈ A , b ∈ B } A \times B = \left\{(a, b) | a \in A, b\in B \right\} A×B={(a,b)aA,bB}

例如:A={1,2}, B={3},A与B的笛卡尔积为{(1,3), (2,3)}

关系

例如A>B,大于号本身就是一个关系,在数学上我们定义一个集合内存在一个关系,表示为这个集合与自己的笛卡尔积下的一个子集。

R ⊆ S × S R \subseteq S \times S RS×S

等价关系

同时可以定义一个等价关系,当这个关系满足如下几个条件:

  1. 反身性:即自己与自己有关系,例如1=1
  2. 对称性:a=b等价于b=a,例如1=2等价于2=1
  3. 传递性:a=b、b=c可以得到a=c

当我们存在一个等价关系后,那么这个集合内与元素x等价的元素集为这个元素x的等价类

举例:同余关系,如关于整数5同余,那么余数只能是1,2,3,4。
如果我们在自然数集合N上定义一个同余关系,那么所有的自然数被分为4类,分别对应余数为1,2,3,4。当然前提是我们能证明同余关系是一个等价关系。每一个等价关系对应一个分类

商集

商集是集合和其上等价类所导出的集合,注意:上述关系、等价关系、商集还不属于抽象代数的范畴,属于集合论的基础。
其实可以这样理解,所谓的除法就是把一个数字分成大小相等的几等份,和切西瓜是一样的。那么集合如何除等价于如何判定子集合的“相等性”,而这个相等性就是等价关系

定义:集合B为集合A关于等价关系 ∼ \sim 的商集合,记为: B = A / ∼ B=A/\sim B=A/

举例:根据上面这个例子,自然数下关于mod5同余的等价类形成了商集合:
B = {{余数是0},{余数是1},{余数是2},{余数是3},{余数是4}}

陪集

陪集是有子群派生出来的,左、右陪集数学上定义如下:

g H = { g h ∣ h ∈ H } gH = \left\{ gh | h \in H \right\} gH={ghhH}

H g = { h g ∣ h ∈ H } Hg = \left\{ hg | h \in H \right\} Hg={hghH}

其中g是G中的一个元素(我们这里称为特征元),H是G的子群。

备注:需要注意的是一个陪集实际上定义了一个等价关系,也就是说a等价于b这个命题等同于a和b属于某个子群

右陪集的等价关系: a ∼ b = = > a b − 1 ∈ H a \sim b ==> ab^{-1} \in H ab==>ab1H
左陪集的等价关系: a ∼ ′ b = = > b − 1 a ∈ H a \sim' b ==> b^{-1}a \in H ab==>b1aH

在这里插入图片描述

备注: 这里的 S 3 S^3 S3表示为3阶置换群,其中(123)的表示方法是 1 --> 2 --> 3 --> 1,(1,2)表示1–>2–>1。H(1)表示用元素1乘上子群H,即产生(1)(1)和(12)(1)。
上面例子中子群H把G分成三个右陪集,它们是G的一个分类;也分成三个左陪集,同样也是G的一个分类。


朗格朗日定理

定义:对于有限群G,H是它的子群,那么H的阶整除G的阶

根据陪集是一个等价类的推断,得到:

G = ∪ i = 1 k a i H G=\cup_{i=1}^ka_iH G=i=1kaiH

有限群G被分解为若干元素关于H的陪集的并。且它们彼此之间无交集。

正规子群

对于任何元素 g ∈ G g \in G gG 总是存在相同的左右陪集gH = Hg。则称H是G的正规子群。

举例:明显可知若G是交换群,那么所有的子群H都是正规子群

商群

由于陪集本身是一个等价类,所以陪集相当于也构建了一个商集(++注意此处是商集不是商群++),如果我们希望构造出来的商集也是一个群的话,那么就需要构筑陪集的子群H同时是一个正规子群

数学上定义:对于群G和它的一个正规子群N,构筑G在N上的商群,记为G/N

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值