YOLOv8 Ultralytics:使用Ultralytics框架进行姿势估计

本文介绍了如何使用Ultralytics框架进行姿势估计,包括安装步骤、实验环境要求,以及如何在YOLOv8模型上运行示例。作者还提供了相关链接和参考资料,供读者进一步学习和实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

前言

相关介绍

  • YOLOv8是YOLO系列实时目标检测器的最新版本,在准确性和速度方面提供了尖端的性能。基于以前的YOLO版本的进步,YOLOv8引入了新的功能和优化,使其成为各种应用中各种目标检测任务的理想选择。
  • YOLOv8官方文档:https://docs.ultralytics.com/
  • 姿势估计是一项涉及识别图像中特定点(通常称为关键点)位置的任务。关键点可以表示对象的各个部分,例如关节、地标或其他独特特征。关键点的位置通常表示为一组 2D[x, y]或 3D[x, y, visible]坐标。
  • 姿势估计模型的输出是一组代表图像中对象上的关键点的点,通常以及每个点的置信度得分。当您需要识别场景中对象的特定部分以及它们之间的相对位置时,姿势估计是一个不错的选择。

前提条件

实验环境

matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.6.0
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.64.0
tensorboard>=2.4.1
pandas>=1.1.4
seaborn>=0.11.0

安装环境

pip install ultralytics
# 或者
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple # 国内清华源,下载速度更快

在这里插入图片描述

在这里插入图片描述

项目地址

Linux

git clone https://github.com/ultralytics/ultralytics.git
Cloning into 'ultralytics'...
remote: Enumerating objects: 4583, done.
remote: Counting objects: 100% (4583/4583), done.
remote: Compressing objects: 100% (1270/1270), done.
remote: Total 4583 (delta 2981), reused 4576 (delta 2979), pack-reused 0
Receiving objects: 100% (4583/4583), 23.95 MiB | 1.55 MiB/s, done.
Resolving deltas: 100% (2981/2981), done.

Windows

请到https://github.com/ultralytics/ultralytics.git网站下载源代码zip压缩包。

使用Ultralytics框架进行姿势估计

在这里插入图片描述

yolo pose predict model=yolov8n-pose.pt source=images/persons.jpeg

在这里插入图片描述
在这里插入图片描述

参考文献

[1] YOLOv8 源代码地址:https://github.com/ultralytics/ultralytics.git.
[2] YOLOv8 Docs:https://docs.ultralytics.com/
[3] https://docs.ultralytics.com/tasks/pose/

<think>好的,我需要回答用户关于使用Ultralytics YOLO进行人体姿势检测的问题。首先,用户询问是否有相关的教程或示例。我应该先确认YOLO版本,因为UltralyticsYOLO有多个版本,比如YOLOv5、YOLOv8,可能支持不同的功能。 接下来,我需要回忆YOLO系列是否支持人体姿势检测。记得YOLOv5有一个姿势检测的分支,而YOLOv8可能也整合了相关的功能。可能需要查阅官方文档或者GitHub仓库来确认。例如,YOLOv8的Keypoints模型就是用于检测关键点的,适用于人体姿势估计。 然后,用户可能需要具体的代码示例。我应该提供一个简单的示例,展示如何加载预训练模型、进行推理并可视化结果。代码部分需要确保使用正确的模型名称,比如'yolov8n-pose.pt',并展示如何处理检测结果中的关键点。 另外,要提到安装步骤,确保用户安装了正确版本的ultralytics库。可能还需要指出如何调整参数,比如conf阈值,以及如何访问关键点的坐标数据。 最后,按照用户的要求生成相关问题,比如模型选择、关键点数量、与其他框架的比较,以及性能优化方法。这些问题可以帮助用户进一步探索和应用姿势检测模型。 需要检查引用部分是否正确,用户提供的引用是关于特征聚集网络的,可能与当前问题关联不大,但按照用户要求,在回答末尾添加引用标识。不过要注意引用的相关性,可能需要确认是否有更合适的引用来源,但根据用户提供的资料,只能使用给定的引用[^1]。 总结步骤:确认模型支持情况,提供安装指南,编写示例代码,说明关键点使用方法,生成相关问题,正确添加引用。</think>以下是使用Ultralytics YOLO进行人体姿势检测的实践指南: ### 1. 环境准备 首先安装最新版`ultralytics`库: ```bash pip install ultralytics ``` ### 2. 关键代码示例 ```python from ultralytics import YOLO import cv2 # 加载预训练姿势检测模型(YOLOv8-pose) model = YOLO('yolov8n-pose.pt') # 可选择n/s/m/l/x不同规模模型 # 进行推理 results = model('input_image.jpg', conf=0.5) # 提取关键点信息 for result in results: keypoints = result.keypoints # 关键点坐标数据 boxes = result.boxes # 检测框信息 # 可视化结果 res_plotted = results[0].plot() cv2.imwrite('output.jpg', res_plotted) ``` ### 3. 关键功能说明 - **模型选择**:YOLOv8-pose系列提供17个关键点检测能力,包含鼻、眼、肩、肘等人体关键解剖点 - **输出解析**: ```python # 获取第一个检测对象的关键点 person_kpts = keypoints.xy[0].cpu().numpy() # 关键点置信度 kpt_conf = keypoints.conf[0].cpu().numpy() ``` - **实时检测**:可通过`stream=True`参数启动摄像头实时检测 ### 4. 性能优化建议 - 使用TensorRT加速:导出为ONNX后部署 - 调整输入分辨率:`model.predict(source, imgsz=640)` - 使用量化模型:`yolov8n-pose-int8.pt`
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FriendshipT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值