基于DETR的人脸伪装检测

本文介绍了如何基于DETR模型训练自己的COCO格式人脸伪装数据集。DETR是一个无需NMS后处理和anchor的目标检测网络,但训练时间长,对小目标检测效果有限。作者分享了修改模型参数、训练及预测的步骤,并提供了数据集、预训练权重和源代码链接。
摘要由CSDN通过智能技术生成

前言

前提条件

实验环境

cython
git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI&egg=pycocotools
submitit
torch>=1.5.0
torchvision>=0.6.0
git+https://github.com/cocodataset/panopticapi.git#egg=panopticapi
scipy
onnx
onnxruntime

项目地址

DETR官方源代码地址:https://github.com/facebookresearch/detr.git

Linux

git clone https://github.com/facebookresearch/detr.git
Cloning into 'yolov8'...
remote: Enumerating objects: 4583, done.
remote: Counting objects: 100% (4583/4583), done.
remote: Compressing objects: 100% (1270/1270), done.
remote: Total 4583 (delta 2981), reused 4576 (delta 2979), pack-reused 0
Receiving objects: 100% (4583/4583), 23.95 MiB | 1.55 MiB/s, done.
Resolving deltas: 100% (2981/2981), done.

Windows

请到https://github.com/facebookresearch/detr.git网站下载源代码zip压缩包。

DETR

  • DETR是Facebook提出的基于Transformer的端到端目标检测网络。DETR做到了真正没有非最大抑制(NMS)后处理,而且不需要anchor(锚点生成)。但是,训练时间较长,对小目标的检测性能不是很高。建议使用可变形注意模块(deformable attention module)代替原始的多头注意力来关注参考点周围的关键位置。
  • DETR论文地址:https://arxiv.org/abs/2005.12872
  • DETR官方源代码地址:https://github.com/facebookresearch/detr.git
    在这里插入图片描述
    在这里插入图片描述

训练自己的数据集

修改models/detr.py中的参数

  • num_class需要设置为max_id+1,
  • 比如本文使用的人脸伪装数据集,索引从0到7,那么num_class应该设置为7+1=8,索引为8的类为背景类。
  • 又比如,有些数据集,索引从1到20,那么num_class应该设置为20+1=21,索引为21的类为背景类,但是因为索引从1开始,所以把索引为0的类设置为N/A,既不是背景也不是前景,应该是缺失类。
  • 作者举例4个类别的索引分别为1,23,24,56,那么num_class应该设置为 56+1 = 57,索引为57的类为背景类。其中缺失索引值:0、2-22、25-55应该用N/A填充,都是缺失类。
# origin
# num_classes = 20 if args.dataset_file != 'coco' else 91
# alter_my [num_classes = (max_obj_id + 1)]
num_classes = 8 if args.dataset_file != 'coco' else 8

在这里插入图片描述

进行训练

python main.py --output_dir ./weights --coco_path ../datasets/face_guise_datasets/ --epochs 100 --resume detr_r50_8.pth

在这里插入图片描述

进行预测

新建一个pre_img.py,内容如下:

import numpy as np
from models.detr import build
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torchvision.transforms as transforms

torch.set_grad_enabled(False)
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
          [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
transform_input = transforms.Compose([transforms.Resize(800),
                                      transforms.ToTensor(),
                                      transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])


def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
         (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=1)


def rescale_bboxes(out_bbox, size):
    img_w, img_h = size
    b = box_cxcywh_to_xyxy(out_bbox)
    b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32, device="cuda")
    return b


def plot_results(pil_img, prob, boxes, img_save_path):
    plt.figure(figsize=(16, 10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
                                   fill=False, color=c, linewidth=3))
        cl = p.argmax()
        text = f'{CLASSES[cl]}:      {p[cl]:0.2f}'
        ax.text(xmin, ymin, text, fontsize=9,
                bbox=dict(facecolor='yellow', alpha=0.5))
    plt.savefig(img_save_path)
    plt.axis('off')
    plt.show()


def main(chenkpoint_path, img_path, img_save_path):
    args = torch.load(chenkpoint_path)['args']
    model = build(args)[0]
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)
    # 加载模型参数
    model_data = torch.load(chenkpoint_path)['model']
    model.load_state_dict(model_data)

    model.eval()
    img = Image.open(img_path).convert('RGB')
    size = img.size
    
    inputs = transform_input(img).unsqueeze(0)
    outputs = model(inputs.to(device))
    # 这类最后[0, :, :-1]索引其实是把背景类筛选掉了
    probs = outputs['pred_logits'].softmax(-1)[0, :, :-1]
    # 可修改阈值,只输出概率大于0.7的物体
    keep = probs.max(-1).values > 0.7
    bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], size)
    # 保存输出结果
    ori_img = np.array(img)
    plot_results(ori_img, probs[keep], bboxes_scaled, img_save_path)


if __name__ == "__main__":
    # CLASSES = ['N/A', "aeroplane", "bicycle", "bird", "boat",
    #            "bottle", "bus", "car", "cat", "chair",
    #            "cow", "diningtable", "dog", "horse",
    #            "motorbike", "person", "pottedplant",
    #            "sheep", "sofa", "train", "tvmonitor", "background"]
    CLASSES = ['glasses', "hat", "nothing", "glasses_hat", "glasses_mask", "hat_mask", "glasses_hat_mask", "mask", "background"]
    main(chenkpoint_path="weights/checkpoint.pth", img_path="test.jpg",
         img_save_path="result.jpg")
python pre_img.py

在这里插入图片描述

相关资源免费获取

人脸伪装数据集

  • 地址:https://download.csdn.net/download/FriendshipTang/88038140

预训练权重:detr_r50_8.pth

  • 地址:https://download.csdn.net/download/FriendshipTang/88038804

本文源码

  • 地址:https://download.csdn.net/download/FriendshipTang/88038809

注:如资源地址失效,请私信我!

参考

[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko. End-to-End Object Detection with Transformers. 2020
[2] DETR 源代码地址. https://github.com/facebookresearch/detr.git
[3] https://blog.csdn.net/m0_46412065/article/details/128538040

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FriendshipT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值