ArcGIS Pro玩转NetCDF数据

       NetCDF(网络公用数据格式)是一种用来存储温度、湿度、气压、风速和风向等多维科学数据(变量)的文件格式。在 ArcGIS 中,通过根据 NetCDF 文件创建图层或表视图,可以用一个维度(例如时间)来显示上述所有变量。

GUID-D4C301CC-48FC-4F6B-8BF2-A94E323D552A-web

关于NC数据的详细描述,请见:https://www.unidata.ucar.edu/software/netcdf/

NetCDF 数据的特性包括:

  • 自描述性,即 netCDF 文件包括关于其中所含数据的信息,如捕获数据元素的时间以及使用的测量单位。
  • 可移植性,或称跨平台性,即在一种操作系统上创建的 netCDF 文件通常可被其他操作系统上的软件读取。
  • 可扩展性,即可有效地读取一个大 netCDF 文件的一个小子集,而无需读取整个文件。

         ArcGIS Pro 本身即可读取 netCDF 文件,无需数据转换或导入便可直接访问数据。无法使用添加数据按钮GUID-BEA7D4CA-53C4-445A-8276-B96A1F9B69D5-web来添加 NetCDF 文件。可以使用“多维工具”工具箱中的创建 NetCDF 栅格图层、创建 NetCDF 要素图层和创建 NetCDF 表视图工具根据 NetCDF 文件来分别创建栅格图层、要素图层和表视图。

       以下是使用 netCDF 数据时可用的工具列表。

GUID-A21C8DE4-9943-4BEA-AE7D-446FA930475D-web

NetCDF 基本词汇

维度

        NetCDF 维度包含名称和大小。维度大小是一个任意的正整数。每个 NetCDF 文件中只有一个维度的大小是“无限制”的。这类维度是无限维度或记录维度。无限维度的变量可以沿着该维度增加到任意长度。

维度可以用来表示实际物理维度,例如时间、经度、纬度或高度。维度还可以用来为其他量建立索引,例如,站点或模型的运行数。指定变量的 shape 时,可以多次使用同一个维度。

变量

        变量代表相同类型的值数组。变量用来存储 NetCDF 文件中的大部分数据。变量具有名称、数据类型以及在创建该变量时指定的维度列表所描述的 shape。维度数称为秩(或维数)。标量变量的秩为 0,矢量的秩为 1,矩阵的秩为 2。变量还可以具有能够在变量创建后进行添加、删除或更改的相关属性。

坐标变量

       与维度同名的一维变量称为坐标变量。坐标变量与一个或多个数据变量的维度相关,通常用来定义与该维度相对应的物理坐标。

坐标变量对于 NetCDF 库来说没有特殊意义。但使用这个库的软件会采用一种特殊的方式来处理坐标变量。

属性

       NetCDF 的属性用于存储辅助数据或元数据。大部分属性提供有关特定变量的信息。这些属性由变量名称与属性名称共同标识。

有些属性提供有关整个 NetCDF 文件的信息,因而称为全局属性。这些属性由属性名称与空变量名(CDL 中)或特殊空变量 ID(C 或 Fortran 中)共同标识。

约定

       约定用来定义为每个变量中的数据提供确切描述的元数据及其空间和时态属性。约定有助于使用不同数据源的用户确定哪些量具有可比性。约定名称在 NetCDF 文件中以全局属性的形式表示。

### 使用 ArcGIS Pro 处理 NetCDF 数据创建降水量分布图 在 ArcGIS Pro 中处理 NetCDF 数据并创建降水量分布图涉及多个步骤,包括设置环境变量、加载 NetCDF 文件以及执行必要的转换和可视化操作。 #### 设置工作空间 为了确保所有操作都在指定的工作目录下进行,需先设定工作空间。这一步骤对于管理项目文件非常重要。 ```python import arcpy arcpy.env.workspace = "C:/path/to/your/workspace" ``` #### 加载 NetCDF 文件 通过 `MakeNetCDFRasterLayer` 工具可以直接从 NetCDF 文件中提取特定变量(如降水),并将这些数据作为栅格图层引入到当前的地图文档中[^1]。 ```python nc_file = "C:/path/to/your/netcdf/file.nc" rainfall_layer = arcpy.MakeNetCDFRasterLayer_md(nc_file, "precipitation", "lon", "lat", "rainfall_layer") ``` #### 转换为永久存储格式 临时创建的 NetCDF 图层可以通过复制命令保存成标准的栅格数据集,以便后续更方便地访问和编辑。 ```python arcpy.CopyRaster_management(rainfall_layer, "C:/path/to/your/output/raster.tif") ``` #### 进行数据分析与可视化 一旦获得了所需的栅格数据集,就可以应用各种 GIS 技术对其进行深入分析或者美观呈现。例如,可以根据需求调整颜色方案,并按照特定区域范围内的掩膜条件筛选感兴趣的部分[^2]。 #### 计算多年平均降水量或其他统计指标 如果手头拥有多年的 NetCDF 数据,则可能还需要计算长期趋势或年度总和等高级统计特征。此时可借助 Spatial Analyst 扩展中的功能完成此类任务[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值