群同态和群同构的区别_如何判断群的同态与同构

展开全部

判断群的62616964757a686964616fe4b893e5b19e31333433633339同态与同构的思路及方法如下:

若想研究某一未知代数体系的结构,可以通过建立这个未知代数体系与某一已知代数体系之间的联系进行研究,而这种联系就刻画了这两个代数体系之间的相似程度。

就是让这两个代数体系的结构完全一致,这时这两个代数体系的联系就用“同构”进行刻画。

同构是两个代数体系之间最精细的刻画,然而一般情况下,同构映射很难找到,于是退而求其次,提出一个比同构弱一些的要求:同态。也就是说,不要求这个映射是双射,那此时对这两个代数体系联系刻画的精细程度就低了很多。

85a7093f7d8d903b16db29675246003c.png

也就是说,虽然建立不了两个群中元素之间的一一对应,但是起码建立了已知群的一个子集合和未知群中的一个元素之间的一一对应,对未知群了解的多少取决于这种刻画的精度,也就是取决于同态核的大小。

可以定义一个二进制自然数到十进制自然数的映射,叫做“把一个数映到自己”;然后这个映射是个(半环)同构,保持加法保持乘法——意思是两个数在二进制下怎么加,在十进制下还是怎么加,加出来的结果还是能相互对应;

还是个双射。二进制自然数和十进制自然数其实是同一个东西,这个世界上只有一种自然数,进制的不同并不会改变自然数半环本身的加法乘法结构以及序结构等等;

所以同构起到的

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
证明有限循环群同于模n的加法群Zn: 假设G是一个有限循环群,生成元为a,|G|=k。那么,对于任意一个元素g∈G,都可以表示为a^m,其中0≤m<k。因此,我们可以定义一个映射f:G→Zn,使得f(a^m)=m(mod n),其中n=k。此时,我们需要证明这个映射是一个同映射。 首先,我们证明这个映射是一个同映射。对于任意的a^m和a^n,我们有: f(a^m+a^n)=f(a^(m+n))=m+n(mod n)=f(a^m)+f(a^n)(mod n) 因此,这个映射是一个同映射。 其次,我们证明这个映射是一个满射。对于任意一个元素m∈Zn,我们可以找到一个元素a^m∈G,使得f(a^m)=m(mod n)。因此,这个映射是一个满射。 最后,我们证明这个映射是一个单射。如果对于不同的元素a^m和a^n,有f(a^m)=f(a^n),那么m=n(mod n),因此a^(m-n)是G的一个非零元素,但它的阶k不能整除n。这与n=k矛盾,因此这个映射是一个单射。 综上所述,这个映射是一个同映射,因此有限循环群同于模n的加法群Zn。 证明无限循环群同于整数加法群Z: 假设G是一个无限循环群,生成元为a。那么,对于任意一个元素g∈G,都可以表示为a^m,其中m是整数。因此,我们可以定义一个映射f:G→Z,使得f(a^m)=m。此时,我们需要证明这个映射是一个同映射。 首先,我们证明这个映射是一个同映射。对于任意的a^m和a^n,我们有: f(a^m+a^n)=f(a^(m+n))=m+n=f(a^m)+f(a^n) 因此,这个映射是一个同映射。 其次,我们证明这个映射是一个满射。对于任意一个整数m∈Z,我们可以找到一个元素a^m∈G,使得f(a^m)=m。因此,这个映射是一个满射。 最后,我们证明这个映射是一个单射。如果对于不同的元素a^m和a^n,有f(a^m)=f(a^n),那么m=n,因此a^(m-n)是G的一个非零元素。由于G是无限循环群,a^(m-n)的阶不可能有限,因此m-n=0,即m=n。因此,这个映射是一个单射。 综上所述,这个映射是一个同映射,因此无限循环群同于整数加法群Z。 同kerf的定义: 设f:G→H是一个群的同映射,其中G和H是两个群。我们定义ker(f)为G的一个子群,使得ker(f)={g∈G|f(g)=e},其中e是H的单位元。此时,我们称G和ker(f)同

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值