Ptrade和QMT谁更好用?

目前证券公司提供提供的量化交易软件,以QMTPtrade为主;Ptrade是由恒生电子开发;而QMT则由迅投开发。



一、两者最核心的区别:

Ptrade是服务器运行、QMT是本地运行

Ptrade是把策略上传到服务器,由服务器运行策略,读取行情并且直接交易不受电脑是否关机限制

优点:交易速度较快,不需要盯盘,不需要本地电脑长时间开机运行

缺点:灵活性不够,不支持第三方库,券商服务器会限制条件,比如不能访问外网,策略放在服务器有泄露风险等等

QMT投资者本地运行,实时行情本地获取进行逻辑判断,交易信号本地生成,终端发送至券商主机。所以本地电脑不能关机、计算全部在本地,平台更多的是提供接口,比如平台提供的下单接口,所以,QMT放在本地执行的策略,自己配置资源,策略代码也不容易泄露,显得更专业

优点:灵活性强,自己配置资源,策略代码也不容易泄露,可以读取本地配置文件,支持第三方库等

缺点:电脑需要长时间开机,打开量化交易终端策略才会运行。

二、支持的编程语言

Ptrade—支持Python编程语言

QMT—支持Python和VBA编程语言

从编程语言来看,QMT支持的编程会多一个VBA,对老牌程序猿来说较为友好。不过VBA策略下只能买卖单股标的。

三、实盘支持品种

Ptrade——支持:股票、两融、ETF申赎、可转债

QMT——股票、两融、ETF申赎、可转债、期权、期货

从实盘支持品种方面对比,可以看出QMT更具有优势,如果有期权和期货方面的需求,那只能选择QMT了

四、支持的回测、交易频率

Ptrade——只支持分钟级和日线级别的频率

QMT——Tick级、分钟级、五分钟级、十分钟级、日线、周线、月线等等

虽然QMT支持级别更多,但是我们常用的还是分钟级和日线级别,根据自己的实际需求来选择



总总来看,小编个人更加倾向于QMT!

QMT怎么开通?

QMT是适用于交易活跃用户、量化爱好者以及专业量化投资者,又可面向高净值的机构或个人。集行情显示、策略研究、交易执行和风控管理于一体的策略交易终端。

QMT量化系统恒生电子专门为券商设计的量化交易系统,可策略回测,自动下单,语言为python。上面也会自带部分基础性的量化策略QMT是迅投旗下的一款主流量化软件,在交易速度、策略开发上非常适合初级quant

目前据我了解所有可以开通量化交易的券商,都是支持QMT极速策略的。

第一:开证券账户。(选择自带量化功能的券商)
第二:注册量化交易,绑定实盘账号。
第三:数据的收集准备。(一般券商平台已经准备好了)
第四:开发交易策略。(不会可以咨询专属服务经理,也可以看参考示例教学)

第五:回归测试。(测试策略的问题及时整理修改)
第六:模拟交易。(熟悉交易策略,从中寻找问题)
第七:实盘交易。(前面准备好,就可以正式上路交易)
  
市面上运用最多的就是QMT和Ptrade。为了让投资者对于极速交易系统有更好的使用体验,一般你的专属服务经理都会先指导你仿真学习测试。当测试账号的体验不错时,跑过几次模拟条件单以后,自己的实盘交易就更得心应手。这样就可以实现自动交易无需自己盯盘操作


那么市面上众多的量化交易平台和券商应该如何选,费用才可以低并且使用方便呢?家人们可以参考此图!
 



关注小编,欢迎交流,了解更多投资知识,一起成长,告别小韭菜!

03-12
<think>好的,用户的问题是关于QMT(Quantitative Trading Platform)、quantmodtrader的。首先需要明确用户的具体需求。QMT是迅投公司开发的量化交易平台,主要用于A股市场。而quantmod是R语言中一个用于量化金融分析的包,常用于数据获取、可视化技术分析。用户可能想知道如何将quantmod与QMT结合使用,或者如何在QMT中实现类似quantmod的功能。 需要确认QMT是否支持R语言的集成。查阅资料发现,QMT主要支持PythonVBA,而quantmod是R的包,因此直接集成可能有难度。可能需要通过其他方式在QMT中使用R代码,比如调用外部脚本或者使用中间件进行通信。 接下来,考虑用户提到的“trader”,可能是指实际的交易执行部分。用户可能希望了解如何在QMT中实现策略回测自动化交易。需要查找QMT的API文档,了解其交易函数回测框架的结构。例如,QMT提供XtTraderXtQuant等模块,用于连接交易接口数据获取。 然后,整合信息。用户可能需要将quantmod的分析结果应用到QMT的交易策略中。可能的解决方案包括:使用R进行数据分析后导出结果,再用Python读取并执行交易;或者使用Python的类似库(如pandas、TA-Lib)替代quantmod,直接在QMT的策略中实现分析。 此外,需要检查QMT的API是否支持实时数据获取订单提交。例如,XtQuant提供历史数据获取函数get_market_data,而XtTrader处理订单。代码示例可能涉及初始化交易接口、订阅数据、计算指标、生成交易信号等步骤。 最后,确保回答符合格式要求:分步骤、无第一人称、代码公式正确格式化,并在最后添加相关问题。相关问题应围绕QMT的功能扩展、quantmod替代方案以及策略部署问题展开。</think>QMT(迅投量化交易平台)与quantmod的结合应用涉及数据获取、策略开发交易执行三个核心环节。以下是实现量化交易的关键方法: --- **数据对接与处理** 通过XtQuant模块获取实时行情数据,使用Python的pandas进行数据处理: ```python from xtquant import xtdata data = xtdata.get_market_data(['000001.SZ'], period='1d') df = data.to_dataframe().reset_index() ``` **技术指标计算** 替代quantmod的技术分析方法,使用TA-Lib实现MACD指标计算: ```python import talib df['macd'], df['signal'], _ = talib.MACD(df['close'], fastperiod=12, slowperiod=26, signalperiod=9) ``` **交易策略实现** 构建双均线策略并通过XtTrader执行: ```python from xtquant.xttrader import XtQuantTrader class Strategy: def on_tick(self): short_ma = df['close'].rolling(5).mean() long_ma = df['close'].rolling(20).mean() if short_ma.iloc[-1] > long_ma.iloc[-1]: XtQuantTrader.order_stock('000001.SZ', 'BUY', 1000) else: XtQuantTrader.order_stock('000001.SZ', 'SELL', 1000) ``` --- **回测验证** 使用QMT内置回测框架验证策略有效性,核心评价指标包括: - 年化收益率:$R_{annual} = (1 + R_{total})^{252/N} - 1$ - 夏普比率:$Sharpe = \frac{E[R_p - R_f]}{\sigma_p}$ - 最大回撤:$MDD = \max_{0≤i<j≤T}(P_i - P_j)/P_i$ ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值