【conda】使用 conda 安装的 cuda-toolkit 时,安装的版本与指定版本不一致

【conda】使用 conda 安装的 cuda-toolkit 时,安装的版本与指定版本不一致

1 问题描述

参考博客: Link

与参考博客的问题相似,我本机是 cuda 11.8,使用 conda 安装 cuda-toolkit 12.1,但最终 nvcc -V 显示为 12.6

执行 conda list 后发现安装 cuda 相关的包来自不同的 channel:

  • nvidia
  • nvidia/label/cuda-12.1.0
  • conda-forge

在这里插入图片描述

2 channel 介绍

2.1 conda-forge

参考文档: Link

conda-forge 是一个社区项目,为各种软件提供 conda 包,所有 conda-forge 包都可以在这里找到: Link

要在Conda环境中安装支持CUDA 11.4.315和Jetpack 5.1.1的onnxruntime-gpu版本,可以按照以下步骤进行: 1. **创建新的Conda环境(可选)**: ```bash conda create -n onnxruntime-gpu-env python=3.8 conda activate onnxruntime-gpu-env ``` 2. **安装CUDA和cuDNN**: 确保你的系统已经安装CUDA 11.4和对应的cuDNN版本。如果还没有安装,可以使用以下命令安装: ```bash conda install -c conda-forge cudatoolkit=11.4 cudnn=8.2 ``` 3. **设置环境变量**: 安装完成后,需要设置环境变量以确保CUDA和cuDNN可以被onnxruntime-gpu找到。 ```bash export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/ export PATH=$PATH:$CONDA_PREFIX/bin ``` 4. **安装onnxruntime-gpu**: 使用Conda安装onnxruntime-gpu,可以指定版本号以确保CUDA版本兼容。 ```bash conda install -c conda-forge onnxruntime-gpu=1.11.1 ``` 5. **验证安装**: 安装完成后,可以通过Python脚本验证onnxruntime-gpu是否正确安装并且能够使用CUDA。 ```python import onnxruntime as ort import numpy as np providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] sess = ort.InferenceSession('your_model.onnx', providers=providers) input_data = np.random.randn(1, 3, 224, 224).astype(np.float32) input_name = sess.get_inputs()[0].name result = sess.run(None, {input_name: input_data}) print(result) ``` 通过以上步骤,你应该能够在Conda环境中成功安装使用支持CUDA 11.4.315和Jetpack 5.1.1的onnxruntime-gpu。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G.Chenhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值