1.一阶微分方程

1.数值方法

1.1 欧拉方法

  一阶微分方程 d y / d x = f ( x , y ) (1) d y / d x=f(x, y)\tag{1} dy/dx=f(x,y)(1)

以及初值 y ( x 0 ) = y 0 y\left(x_{0}\right)=y_{0} y(x0)=y0给定了函数 y ( x ) y(x) y(x)在初值点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的切线斜率 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)。以该初值为起点,以切线为方向,按照某步长 Δ x = x 1 − x 0 \Delta x=x_1-x_0 Δx=x1x0变化到新点 ( x 1 , y 1 ) (x_1,y_1) x1,y1。这就是欧拉方法,用公式表述为式(1):
y 1 = y 0 + Δ x f ( x 0 , y 0 ) (2) y_{1}=y_{0}+\Delta x f\left(x_{0}, y_{0}\right)\tag{2} y1=y0+Δxf(x0,y0)(2)

1.2 龙格库塔方法

  欧拉方法也别称为一阶龙格库塔法
  二阶龙格库塔法的通式为:
k 1 = Δ x f ( x n , y n ) , k 2 = Δ x f ( x n + α Δ x , y n + β k 1 ) , y n + 1 = y n + a k 1 + b k 2 (3) k_{1}=\Delta x f\left(x_{n}, y_{n}\right), \quad k_{2}=\Delta x f\left(x_{n}+\alpha \Delta x, y_{n}+\beta k_{1}\right), \quad y_{n+1}=y_{n}+a k_{1}+b k_{2}\tag{3} k1=Δxf(xn,yn),k2=Δxf(xn+αΔx,yn+βk1),yn+1=yn+ak1+bk2(3)

并满足

a + b = 1 , α b = β b = 1 / 2 (4) a+b=1,\alpha b=\beta b=1 / 2\tag{4} a+b=1αb=βb=1/2(4)

2. 可分离变量的一阶方程

  可分离变量的一阶方程可写为
g ( y ) d y d x = f ( x ) , y ( x 0 ) = y 0 (5) g(y) \frac{d y}{d x}=f(x), \quad y\left(x_{0}\right)=y_{0}\tag{5} g(y)dxdy=f(x),y(x0)=y0(5)

两边从 x 0 x_0 x0 x 1 x_1 x1进行积分, ∫ x 0 x g ( y ( x ) ) y ′ ( x ) d x = ∫ x 0 x f ( x ) d x (6) \int_{x_{0}}^{x} g(y(x)) y^{\prime}(x) d x=\int_{x_{0}}^{x} f(x) d x\tag{6} x0xg(y(x))y(x)dx=x0xf(x)dx(6)

进行变量替换 u = y ( x ) , d u = y ′ ( x ) d x u=y(x), d u=y^{\prime}(x) d x u=y(x),du=y(x)dx,并改变积分上下限为 y ( x 0 ) = y 0 y\left(x_{0}\right)=y_{0} y(x0)=y0 y ( x ) = y y(x)=y y(x)=y。因此有 ∫ y 0 y g ( u ) d u = ∫ x 0 x f ( x ) d x (7) \int_{y_{0}}^{y} g(u) d u=\int_{x_{0}}^{x} f(x) d x\tag{7} y0yg(u)du=x0xf(x)dx(7)

3. 一阶线性微分方程

  形如 d y d x + p ( x ) y = g ( x ) , y ( x 0 ) = y 0 (8) \frac{d y}{d x}+p(x) y=g(x), \quad y\left(x_{0}\right)=y_{0}\tag{8} dxdy+p(x)y=g(x),y(x0)=y0(8)

的方程。微分方程的求解借助于名为积分因子的函数 μ ( x ) \mu(x) μ(x)的求解。积分因子是这样一个函数,它乘以式(8)后得到的式子为
μ ( x ) [ d y d x + p ( x ) y ] = μ ( x ) g ( x ) (8) \mu(x)\left[\frac{d y}{d x}+p(x) y\right]=\mu(x) g(x)\tag{8} μ(x)[dxdy+p(x)y]=μ(x)g(x)(8)

而该式左边等于一个积分
μ ( x ) [ d y d x + p ( x ) y ] = d d x [ μ ( x ) y ] (9) \mu(x)\left[\frac{d y}{d x}+p(x) y\right]=\frac{d}{d x}[\mu(x) y]\tag{9} μ(x)[dxdy+p(x)y]=dxd[μ(x)y](9)

d d x [ μ ( x ) y ] = μ ( x ) g ( x ) \frac{d}{d x}[\mu(x) y]=\mu(x) g(x) dxd[μ(x)y]=μ(x)g(x),利用初值 y ( x 0 ) = y 0 y\left(x_{0}\right)=y_{0} y(x0)=y0并令 μ ( x 0 ) = 1 \mu\left(x_{0}\right)=1 μ(x0)=1,可得 μ ( x ) y − y 0 = ∫ x 0 x μ ( x ) g ( x ) d x \mu(x) y-y_{0}=\int_{x_{0}}^{x} \mu(x) g(x) d x μ(x)yy0=x0xμ(x)g(x)dx,求得:
y ( x ) = 1 μ ( x ) ( y 0 + ∫ x 0 x μ ( x ) g ( x ) d x ) (10) y(x)=\frac{1}{\mu(x)}\left(y_{0}+\int_{x_{0}}^{x} \mu(x) g(x) d x\right)\tag{10} y(x)=μ(x)1(y0+x0xμ(x)g(x)dx)(10)

为求积分因子,展开式(9),得
d μ d x = p ( x ) μ , μ ( x 0 ) = 1 (11) \frac{d \mu}{d x}=p(x) \mu, \quad \mu\left(x_{0}\right)=1\tag{11} dxdμ=p(x)μ,μ(x0)=1(11)

这是可分离变量微分方程,得
μ ( x ) = exp ⁡ ( ∫ x 0 x p ( x ) d x ) (12) \mu(x)=\exp \left(\int_{x_{0}}^{x} p(x) d x\right)\tag{12} μ(x)=exp(x0xp(x)dx)(12)

注解:积分因子是构造出来的。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值