微分方程(考研)

一阶常系数微分方程

可分离变量
齐次型

  • y ′ = f ( y x ) y^{'}=f(\frac{y}{x}) y=f(xy)

一阶线性

  • y ′ + p ( x ) y = q ( x ) y^{'}+p(x)y=q(x) y+p(x)y=q(x)
  • u = e ∫ p ( x ) d x u=e^{\int p(x)dx} u=ep(x)dx
  • ( u y ) ′ = u q ( x ) (uy)^{'}=uq(x) (uy)=uq(x)

伯努利方程

  • y ′ + p ( x ) y = q ( x ) y n y^{'}+p(x)y=q(x)y^n y+p(x)y=q(x)yn
  • 先变形为 y − n y ′ + p ( x ) y 1 − n = q ( x ) y^{-n}y^{'}+p(x)y^{1-n}=q(x) yny+p(x)y1n=q(x)
  • z = y 1 − n ⇒ d z d x = ( 1 − n ) d y d x ⇒ 1 n − 1 d z d x + p ( x ) z = q ( x ) z=y^{1-n}\Rightarrow\frac{dz}{dx}=(1-n)\frac{dy}{dx}\Rightarrow\frac{1}{n-1}\frac{dz}{dx}+p(x)z=q(x) z=y1ndxdz=(1n)dxdyn11dxdz+p(x)z=q(x)

二阶可降阶

y ′ ′ = f ( x , y ′ ) y^{''}=f(x,y^{'}) y=f(x,y),即缺 y y y

  • y ′ = p , y ′ ′ = p ′ ⇒ d p d x = f ( x , p ) y^{'}=p,y^{''}=p^{'}\Rightarrow \frac{dp}{dx}=f(x,p) y=p,y=pdxdp=f(x,p)

y ′ ′ = f ( y , y ′ ) y^{''}=f(y,y^{'}) y=f(y,y),即缺 x x x

  • y ′ = p , y ′ ′ = d p d x = d p d y d y d x = p d p d y ⇒ p d p d y = f ( y , p ) y^{'}=p,y^{''}=\frac{dp}{dx}=\frac{dp}{dy}\frac{dy}{dx}=p\frac{dp}{dy}\Rightarrow p\frac{dp}{dy}=f(y,p) y=p,y=dxdp=dydpdxdy=pdydppdydp=f(y,p)

高阶常系数线性微分方程的求解

y ′ ′ + p y ′ + q y = f ( x ) y^{''}+py^{'}+qy=f(x) y+py+qy=f(x)

  • r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0
    • 两个不等实根
      • y = C 1 e r 1 x + C 2 e r 2 x y=C_1e^{r_1x}+C_2e^{r_2x} y=C1er1x+C2er2x
    • 两个相等实根
      • y = ( C 1 + C 2 x ) e r x y=(C_1+C_2x)e^{rx} y=(C1+C2x)erx
    • 一对共轭复根
      • r = α ± β i r=\alpha\plusmn\beta i r=α±βi
      • y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y=e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x) y=eαx(C1cosβx+C2sinβx)

特解

  • f ( x ) = P n ( x ) e α x f(x)=P_n(x)e^{\alpha x} f(x)=Pn(x)eαx

    • y ∗ = e α x Q n ( x ) x k y^*=e^{\alpha x}Q_n(x)x^k y=eαxQn(x)xk
    • k = { 0 , α ≠ r 1 , α ≠ r 2 1 , α = r 1   o r   α = r 2 2 , α = r 1 = r 2 k=\left\{ \begin{aligned} &0, \alpha\neq r_1, \alpha \neq r_2\\ &1,\alpha= r_1\ or\ \alpha = r_2\\ &2,\alpha=r_1=r_2 \end{aligned} \right. k=0,α=r1,α=r21,α=r1 or α=r22,α=r1=r2
  • f ( x ) = e α x [ P m ( x ) cos ⁡ β x + P n ( x ) sin ⁡ β x ] f(x)=e^{\alpha x}[P_m(x)\cos\beta x+P_n(x)\sin \beta x] f(x)=eαx[Pm(x)cosβx+Pn(x)sinβx]

    • y ∗ = e α x [ Q l ( 1 ) ( x ) cos ⁡ β x + Q l ( 2 ) ( x ) sin ⁡ β x ] x k y^*=e^{\alpha x}[Q_{\mathcal{l}}^{(1)}(x)\cos\beta x+Q_{\mathcal{l}}^{(2)}(x)\sin \beta x]x^k y=eαx[Ql(1)(x)cosβx+Ql(2)(x)sinβx]xk
    • l = max ⁡ { m , n } \mathcal{l}=\max\{m, n\} l=max{m,n}
    • k = { 0 , α ± β i 不 是 特 征 根 1 , α ± β i 是 特 征 根 k=\left\{ \begin{aligned} &0, \alpha\plusmn\beta i不是特征根\\ &1,\alpha\plusmn\beta i是特征根 \end{aligned} \right. k={0,α±βi1,α±βi

欧拉方程

x 2 y ′ ′ + p x y ′ + q y = f ( x ) x^2y^{''}+pxy^{'}+qy=f(x) x2y+pxy+qy=f(x)

  • x > 0 , x = e t , t = l n x , d t d x = 1 x x>0, x=e^t, t=ln x, \frac{dt}{dx}=\frac{1}{x} x>0,x=et,t=lnx,dxdt=x1
  • D = d d t , d y d x = d y d t d t d x = 1 x d y d t , d 2 y d x 2 = − 1 x 2 d y d t + 1 x 2 d 2 y d t 2 D=\frac{d}{dt},\frac{dy}{dx}=\frac{dy}{dt}\frac{dt}{dx}=\frac{1}{x}\frac{dy}{dt},\frac{d^2y}{dx^2}=-\frac{1}{x^2}\frac{dy}{dt}+\frac{1}{x^2}\frac{d^2y}{dt^2} D=dtd,dxdy=dtdydxdt=x1dtdy,dx2d2y=x21dtdy+x21dt2d2y
  • … \dots
  • x y ′ = D y , x 2 y ′ ′ = D ( D − 1 ) y xy^{'}=Dy,x^2y^{''}=D(D-1)y xy=Dy,x2y=D(D1)y

y ( n ) y^{(n)} y(n)的情形

y ′ ′ ′ + p 1 y ′ ′ + p 2 y ′ + p 3 y = 0 y^{'''}+p_1y^{''}+p_2y^{'}+p_3y=0 y+p1y+p2y+p3y=0

  • r 3 + p 1 r 2 + p 2 r + p 3 = 0 r^3+p_1r^2+p_2r+p_3=0 r3+p1r2+p2r+p3=0
    • 单实根
      • y = ∑ C i e λ i x y=\sum C_ie^{\lambda_i x} y=Cieλix
    • k重实根
      • y = ( C 1 + C 2 x + ⋯ + C k x k − 1 ) e r x y=(C_1+C_2x+\dots+C_kx^{k-1})e^{r x} y=(C1+C2x++Ckxk1)erx
    • 单复根 α + β i \alpha+\beta i α+βi
      • e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) e^{\alpha x}(C_1\cos \beta x + C_2 \sin \beta x) eαx(C1cosβx+C2sinβx)
  • 例子 y ′ ′ ′ − y = 0 ⇒ r 3 − 1 = 0 y^{'''}-y=0\Rightarrow r^3-1=0 yy=0r31=0
    • r 1 = 1 , r 2 , 3 = − 1 2 ± 3 2 i r_1=1,r_{2,3}=-\frac{1}{2}\plusmn\frac{\sqrt{3}}{2}i r1=1,r2,3=21±23 i
    • y = C 1 e x + e − 1 2 x ( C 2 cos ⁡ 3 2 x + C 3 sin ⁡ 3 2 x ) y=C_1e^x+e^{-\frac{1}{2}x}(C_2\cos\frac{\sqrt{3}}{2}x + C_3\sin\frac{\sqrt{3}}{2}x) y=C1ex+e21x(C2cos23 x+C3sin23 x)

换元法

  • 求导公式逆用
    • ( sin ⁡ y ) x ′ = cos ⁡ y d y d x (\sin y)_x^{'}=\cos y\frac{dy}{dx} (siny)x=cosydxdy
  • 自变量换元
  • 因变量换元
  • x , y x,y x,y地位互换

微分方程的算子法

y ′ ′ + p y ′ + q y = { k e α x k sin ⁡ α x , k cos ⁡ α x P n ( x ) e α x sin ⁡ β x e α x P n ( x ) s i n α x P n ( x ) y^{''}+py^{'}+qy=\left\{ \begin{aligned} &ke^{\alpha x}\\ &k\sin \alpha x,k \cos \alpha x\\ &P_n(x)\\ &e^{\alpha x}\sin \beta x\\ &e^{\alpha x}P_n(x)\\ &sin^{\alpha x}P_n(x) \end{aligned} \right. y+py+qy=keαxksinαx,kcosαxPn(x)eαxsinβxeαxPn(x)sinαxPn(x)

Prerequisite

  • D = d d x ⇒ D 2 y + p D y + q D = f ( x ) D=\frac{d}{dx}\Rightarrow D^2y+pDy+qD=f(x) D=dxdD2y+pDy+qD=f(x)
  • y ( D 2 + p D + q ) = f ( x ) y(D^2+pD+q)=f(x) y(D2+pD+q)=f(x)
  • y ∗ = f ( x ) P ( D ) y^*=\frac{f(x)}{P(D)} y=P(D)f(x)
    • e k x P ( D ) = e k x P ( k ) = y ∗ \frac{e^{kx}}{P(D)}=\frac{e^{kx}}{P(k)}=y^* P(D)ekx=P(k)ekx=y
      • 若k为特征方程的m重根
      • y ∗ = e k x P ( D ) = x m e k x P ( m ) ( D ) = x m e k x P ( m ) ( k ) y^*=\frac{e^{kx}}{P(D)}=x^m\frac{e^{kx}}{P^{(m)}(D)}=x^m\frac{e^{kx}}{P^{(m)}(k)} y=P(D)ekx=xmP(m)(D)ekx=xmP(m)(k)ekx
  • 1 P ( D ) e k x v ( x ) = e k x 1 P ( D + k ) v ( x ) \frac{1}{P(D)}e^{kx}v(x)=e^{kx}\frac{1}{P(D+k)}v(x) P(D)1ekxv(x)=ekxP(D+k)1v(x)
  • y ∗ = 1 P ( D ) f ( x ) = 1 P 1 ( D ) P 2 ( D ) f ( x ) y^*=\frac{1}{P(D)}f(x)=\frac{1}{P_1(D)P_2(D)}f(x) y=P(D)1f(x)=P1(D)P2(D)1f(x)
  • P ( D ) P(D) P(D)可表示为 P ( D 2 ) P(D^2) P(D2),且 y ∗ = sin ⁡ α x P ( D 2 ) y^*=\frac{\sin\alpha x}{P(D^2)} y=P(D2)sinαx
    • P ( − α 2 ) ≠ 0 ⇒ sin ⁡ α x P ( − α 2 ) P(-\alpha^2)\neq 0\Rightarrow\frac{\sin \alpha x}{P(-\alpha^2)} P(α2)=0P(α2)sinαx
    • P ( − α 2 ) = 0 , p ( m ) ( − α 2 ) ≠ 0 P(-\alpha^2)=0,p^{(m)}(-\alpha^2)\neq 0 P(α2)=0,p(m)(α2)=0
      • x m 1 P ( m ) ( D 2 ) sin ⁡ α x x^m\frac{1}{P^{(m)}(D^2)}\sin \alpha x xmP(m)(D2)1sinαx
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值